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Abstract

The multi-class dynamic origin-destination (OD) demand
plays a central role in the transportation network modeling.
Due to the lack of studies focusing on the multi-class
dynamic OD demand, this paper presents a solution
framework for multi-class dynamic OD demand estimation
(MCDODE) on large-scale networks. The proposed
framework Is built on a computational graph with tensor
representations of all the variables involved in the
MCDODE formulation. A novel forward-backward
algorithm Is proposed to efficiently solve the MCDODE
formulation on the computational graph. In the forward-
backward algorithm, a tree-based cumulative curve is
adopted to evaluate the gradient of OD demand. The
proposed framework is examined on a small network as
well as a real-world large-scale network. The experiment
results are compelling, satisfactory and computationally
plausible.

Background
The dynamic OD estimation (DODE) problem has been
extensively studied over the past few decades.
However, there is a lack of multi-class dynamic OD demand
estimation method that can be applied to large-scale
networks with real-world data.
MCDOD can help the policymakers understand the impact
of each vehicle class to the roads, and hence the traffic
management and operation policy for a specific vehicle
class can be studied.

Modeling multi-class dynamic traffic flow

The relation between OD flow and path flow
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The relation between path flow and link flow
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The relation between link flow and observed flow
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Combining above relation, we have
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The Computational graph

The basic formulation for multi-class dynamic origin-destination

estimation (MCDODE).
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* Forward iteration solves the dynamic traffic assignment problem
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* Backward iteration uses the back propagation to derive the gradient
of OD demand
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Framework of forward-backward algorithm
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All training techniques in the deep neural networks can be applied!

» GPU acceleration
» Parallel computing (parameter server)
» Adaptive gradient descent: Adam, Adadelta, Adagrad

Numerical Experiments

* A7-link network

We construct the multi-class dynamic OD demand by random
number generators and then treat it as the “true” OD demand. We
use R-square between the “true” flow and estimated flow to

measure the estimation accuracy. AD
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Convergence curve and estimated path flow
« Alarge-scale network: Pittsburgh metropolitan area

» The network covers the ten
counties of southwestern
Pennsylvania region, with
the Pittsburgh city inthe ==
center.

» The network also consists of
16,110 links, 6,297 nodes
and 283 origins/destinations.
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Overview of Pittsburgh
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Estimated and observed flow for cars and trucks (unit: vehicle/15mins)
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