If link cost is a defined as a continuous function, and can be approximated by

\[f(p) = \sum F(r) \sigma^q \sum \sum c_a \leq \min \sum \sum \Delta \]

Travelers select their route by a generalized route choice model.

We perform the GESTA on a small network as follows, the analytical
min \[X \longrightarrow x, f \]

A norm approximation is adopted to find the analytical solution.

Each BPR link travel time function is adopted,

Comparison with classical assignment models

- The following figures are the probability density and contour of \(X_1 \) and \(X_2, X_3 \) and \(X_4 \). The contours can also be interpreted as confidence intervals under different confidence levels.

Large network: SR41 corridor

- Day to day traffic flow contains multidimensional variations.

Day-to-day flow variations

A norm approximation is adopted to find the analytical solution.

Each BPR link travel time function is adopted,

Comparison with classical assignment models

- The following figures are the probability density and contour of \(X_1 \) and \(X_2, X_3 \) and \(X_4 \). The contours can also be interpreted as confidence intervals under different confidence levels.

Large network: SR41 corridor

- Day to day traffic flow contains multidimensional variations.

Day-to-day flow variations

A norm approximation is adopted to find the analytical solution.

Each BPR link travel time function is adopted,

Comparison with classical assignment models

- The following figures are the probability density and contour of \(X_1 \) and \(X_2, X_3 \) and \(X_4 \). The contours can also be interpreted as confidence intervals under different confidence levels.

Large network: SR41 corridor

- Day to day traffic flow contains multidimensional variations.

Day-to-day flow variations

A norm approximation is adopted to find the analytical solution.

Each BPR link travel time function is adopted,

Comparison with classical assignment models

- The following figures are the probability density and contour of \(X_1 \) and \(X_2, X_3 \) and \(X_4 \). The contours can also be interpreted as confidence intervals under different confidence levels.

Large network: SR41 corridor

- Day to day traffic flow contains multidimensional variations.

Day-to-day flow variations

A norm approximation is adopted to find the analytical solution.

Each BPR link travel time function is adopted,

Comparison with classical assignment models

- The following figures are the probability density and contour of \(X_1 \) and \(X_2, X_3 \) and \(X_4 \). The contours can also be interpreted as confidence intervals under different confidence levels.

Large network: SR41 corridor

- Day to day traffic flow contains multidimensional variations.

Day-to-day flow variations

A norm approximation is adopted to find the analytical solution.

Each BPR link travel time function is adopted,

Comparison with classical assignment models

- The following figures are the probability density and contour of \(X_1 \) and \(X_2, X_3 \) and \(X_4 \). The contours can also be interpreted as confidence intervals under different confidence levels.

Large network: SR41 corridor

- Day to day traffic flow contains multidimensional variations.

Day-to-day flow variations

A norm approximation is adopted to find the analytical solution.

Each BPR link travel time function is adopted,