On the Variance of Recurrent Traffic Flow for Statistical Traffic Assignment

Wei Ma, Sean Qian

Carnegie Mellon University, Civil and Environmental Engineering

Abstract

Motivation:

The origin-destination (OD) demand is a critical input to system modeling in transportation planning and management. For decades, OD demand is deterministically modeled as it's translated into deterministic link/path flow and travel cost. Recent studies on transportation network uncertainty and reliability call for modeling the stochasticity of OD demand, namely its spatio-temporal correlation and variation.

Objectives:

Build statistical relationship between traffic demand and network conditions (link/path flow, travel time).

Background

Classical traffic assignment and OD estimation methods only model the averaged condition of the traffic condition.

$$\phi: q \mapsto x, f$$

Daily time-varying traffic counts on SR41 SB and NB (Blue curve is the daily average. Each grey curve represents one day in May 2015)

□Statistical traffic assignment explores the statistical features of recurrent flow patterns.

$$\phi: Q \mapsto X, F$$

Day to day traffic flow contains multidimensional variations.

Day-to-day flow variations

□Traffic data include road flow, travel speed and history OD (with noise).

Model detail

OD demand

- OD demands is represented by Q_{rs}
- OD demands follow a rounded multivariate normal (MVN) distribution.

 $Q \sim N(q, \Sigma_q)$

Individual route choice probability

• Travelers select their route by a generalized route choice model.

$$= \Psi(c, \Sigma_c)$$

• If Random Utility Model (RUM) is used, the route choice can be represented by m = Pr[C] < min C = 1

 $p_{rs,k} = \Pr[C_{rs,k} \le \min_{i \ne k} C_{rs,i}]$

Path flow

• Each traveler independently makes identically distributed route choices on every day, which follows a multinomial distribution.

$$F_{rs}|Q_{rs} \sim MN(Q_{rs}, p_{rs})$$

• A norm approximation is adopted to find the analytical solution.

$$F_{rs}|Q_{rs} \sim N(Q_{rs}, p_{rs})$$

Link flow and cost

- Link flow is a linear transformation from the path flow.
- Link cost is a defined as a continuous function, and can be approximated by

Taylor expansion.

T 11	Multilevel structure	
Level I:	$X_m \sim N(X + e, \Sigma_x + \Sigma_e)$	Measurement error
Level 2:	$X \sim N(\Delta pQ, \Sigma_{\gamma})$	Route choice variation
Level 3: $F \sim N(pQ, \Sigma_f)$ $Q \sim N(q, \Sigma_q)$	$F \sim N(pQ, \Sigma_f)$	OD variation
	$Q \sim N(q, \Sigma_q)$	

Experiment results

• We perform the GESTA on a small network as follows, the analytical properties of link/path flows, travel costs can be derived.

Small network: 3-path network

• BPR link travel time function is adopted, q = 1000, $\sigma_{OD}^2 = 10000$, $\sigma_e^2 = 100$, $cap_a = 360$

Carnegie Mellon University Civil and Environmental Engineering

• The following figures are the probability density and contour of X_1 and X_2 , X_3 and X_4 . The contours can also be interpreted as confidence intervals under different confidence levels.

• Comparison with classical assignment models

Links	GESTA	Logit-SUE, $\Theta = 0.1$	Logit-SUE, $\Theta = 0.01$	
Link 1	$\mathcal{N}(455.6, 49.2^2)$	422.3	360.1	4
Link 2	$\mathcal{N}(544.4, 57.5^2)$	577.7	639.9	
Link 3	$\mathcal{N}(161.4, 22.3^2)$	263.8	316.5	
Link 4	$\mathcal{N}(383.0, 42.5^2)$	313.9	323.4	4

Large network: SR41 corridor

The 5%, 50% and 95% quantiles link flows (Using Rectangle CI approximation. Red represents volume/capacity 1, and green represents volume/capacity=0, other colors are smoothly transitioned from green to red as volume/capacity increases from 0 to 1)

