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Executive Summary 

This project developed a general regional network model to estimate/predict 

time-varying traffic evolution on all highways and major arterials in 

Philadelphia Metropolitan Region. A case study was conducted for assessing 

the dynamic traffic impact of road closures on freeways and/or major arterials in 

the Philadelphia Region; and propose real-time traffic detour plans as a way of 

using travel demand management (TDM) strategies to mitigate overall impact 

caused by closures. 

The first phase involved the collection of data for the project and summarizing 

the data with a major focus on establishing a dynamic network model for the 

Philadelphia Metropolitan Region. This dynamic transportation network model 

that provides estimated day-to-day origin-destination demand among all Traffic 

Analysis Zones (TAZs) is developed. We examined and carefully calibrated the 

route choices for all the travelers with different origins and destinations using 

observed traffic counts and speed data. The calibrated model is capable of 

estimating network-wide traffic impacts caused by any incident based upon a 

generic regional network consisting of freeway and major arterials. 

We also developed real-time Dynamic Traffic Assignment (DTA) algorithms 

that take real-time incident reports and real-time speed measurements 

simultaneously to update the underlying flow propagation. In addition to 

predicting next-hour network flow, we intervene the network flow by 

optimizing the messages fed to dynamic message signs (DMS). Real-time DTA 

is essentially solved with, in part, optimal traffic routing only at limited DMS 

locations. The real-time prediction and message optimum are solved with 

algorithms that are computationally efficient for large-scale network. 

The proposed model is implemented as an internet web application, a website 

built to visualize the control strategies and animate the flow evolutions. All the 

user interactions with the real-time traffic management model are based on 

browsers. 
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Abbreviations 

API: Application Programming Interface 

BUE: Boston User Equilibrium 

CTM: Cell Transmission Model 

DODE: Dynamic Origin-Destination Estimation 

DTA: Dynamic Traffic Assignment 

DMS: Dynamic Message Signs 

DVRPC: Delaware Valley Regional Planning Commission 

LPFE: Logit Path Flow Estimator 

O-D: Origin-Destination 

PUE: Predictive User Equilibrium 

RMSE: Root Mean Square Error 

TAZ: Traffic Analysis Zones 

TDM: Travel Demand Management 

TMC: Traffic Message Channel 

UE: User Equilibrium 

VHT: Vehicle Hours Traveled 

VMT: Vehicle Miles Traveled 
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1 Introduction 

Non-recurrent traffic congestion caused by roadway construction work, planned 

events, and unplanned traffic incidents can create massive traffic tie-ups and can 

have equally large economic and environmental regional impacts. More 

roadway rehabilitation/reconstruction work has been conducted over the recent 

years on heavily travelled urban corridors which are already “capacity-hungry”. 

With the availability of various traffic data to identify congestion (real-time and 

historically archived), how to minimize incident-induced disruption to 

commuting traffic and its impact to the environment presents a big challenge to 

public agencies. While planned and unplanned incidents require careful 

evaluation of alternative construction plans and corresponding traffic 

management plans, guidelines to develop efficient traffic demand management 

strategies are often lacking.  Consequently, there is a real need to study planned 

and unplanned traffic incidents to learn valuable lessons to prepare public 

agencies to deal more effectively with large routine highway maintenance, 

reconstruction, big sports events, catastrophic vehicle crash and emergency 

situations. 

The Philadelphia Metropolitan Region is traffic data rich compared to other 

metropolitan areas in the U.S. Various data sets in the Philadelphia region, 

including traditional traffic sensors (loops, cameras, etc.) and cutting-edge 

sensors (Bluetooth, GPS probe, parking, etc.), are available and have been 

archived for a decade. The rich data sets allow us to learn travelers’ behavior 

more accurately and develop an in-depth understanding of non-recurrent traffic 

in large-scale networks, which is usually influenced by abnormal disruptions 

(such as incidents, events, weather, etc.).  

Therefore we want to develop a general regional network model to 

estimate/predict time-varying traffic evolution on all highways and major 

arterials in Philadelphia Metropolitan Region. We accomplish this by 

conducting a case study for I-95 closures, assessing the dynamic traffic impact 

of the closures on both freeways and major arterials in the Philadelphia Region; 

and propose real-time traffic detour plans as a way of using travel demand 

management (TDM) strategies to mitigate overall impact caused by closures. 

The purposes of the project are: 

 Develop a generic regional network model to estimate/predict time-

varying traffic evolution on all highways and major arterials in 

Philadelphia Metropolitan Region. The model estimates origin-

destination demands within the region and captures travel behavior of 

those travelers (in particular their time-varying route choices). 

 Conduct a case study for Center City bridge closures: assess the dynamic 

traffic impact of Center City Bridge closures on both freeways and major 
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arterials in the Philadelphia Region; propose real-time traffic detour plans 

as a way of travel demand management (TDM) to mitigate overall impact 

caused by closures. The traffic detour plans include optimized traffic 

signal timing on major intersections and on-site detour strategies through 

Dynamic Message Signs (DMS).  

 Conduct a second case study for hypothetical I-95 closures: assess traffic 

impact of I-95 closures in Downtown Philadelphia and prepare traffic 

detour plans. 

The remainder of this report is organized as follows.  

 Section 2 briefly reviews the cutting-edge off-line and on-line dynamic 

traffic network models.  

 Section 3 summarizes and describes the road network files and date we 

obtained.  

 Section 4 describes the procedures of constructing the network and pre-

processing the traffic data. 

 Section 5 presents the model details of the off-line dynamic traffic 

assignment model on Philadelphia Metropolitan Region. 

 Section 6 presents the model details of the on-line dynamic traffic 

assignment model on Philadelphia Metropolitan Region. 
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2. Model review 

As an emerging technology in transportation area, Dynamic Traffic Assignment 

(DTA) plays a vital role for real-time traffic management and planning. DTA 

consists of various kinds of sub-models such as dynamic routing, traffic flow 

evolution theory, travel behavior model and economic models (Peeta & 

Ziliaskopoulos 2001). There are two main components in the DTA families, off-

line DTA and on-line DTA. Off-line DTA collects the data before learning the 

travelers’ behavior and simulating traffic. While the on-line DTA model 

collects the real time data as the simulation goes.  It uses the real-time data to 

correct the estimation of demand and behavior on the fly, and there is usually 

more challenging. The off-line DTA model is usually used for traffic 

planning/operation, whereas the on-line DTA model is used for real-time traffic 

prediction and management. 

In this section, we build both off-line DTA model and real-time DTA for the 

Philadelphia Metropolitan Region and analyze the traffic impact of road 

closures. To familiarize readers the development of DTA models, we present a 

brief literature review on some important issues on simulation-based DTA 

models and discuss several cutting-edge on-line and off-line DTA models. 

2.1 Route choice model 

Route choice model is a crucial part to real-time traffic simulation. Under static 

network setting, the route choice of travelers is usually determined by a user-

equilibrium (UE) flow pattern (Sheffi 1985). In dynamic context, there are 

generally two types of UE in the literature. One is the so-called Boston User 

Equilibrium (BUE) (Friesz et al. 1993), which is an adaption of the static 

Wardroppian UE. It assumes a traveler chooses the shortest route only based on 

the prevailing traffic condition at the time of his choice decision (Kuwahara & 

Akamatsu 2001). The other UE type is the so-called Predictive User 

Equilibrium (PUE). Under this behavioral assumption, travelers choose the 

shortest route based on “anticipated" travel times, or travel times that they 

actually experienced from previous days. The result is a UE in which the actual 

travel times/costs for travelers from any O-D pair are minimal and identical 

(Friesz et al. 1993), regardless the routes they take. In reality, traveler’s route 

choice behavior is likely to be more complicated and unpredicted than BUE and 

PUE. For example, travelers may not consider all the possible routes but have 

several pre-trip routes in mind prior to their departure, which are selected from 

their day-to-day traveling experiences. Moreover, these pre-selected routes may 

not be user-optimal ones. In view of this, a hybrid traffic assignment model was 

purposed to model both equilibrium and disequilibrium traffic conditions (Qian 

& Zhang 2013). We adopt the hybrid model in this project with the diversion 

ratio indicating how reactive travelers are in choosing routes. 



6 

 

2.2 Flow evolution model 

The flow evolution models describe the dynamic relationship between vehicle 

density, speed and volume for one road segment. Three models are most 

adopted by various mesoscopic traffic simulation tools: Point Queue (PQ) (Jin 

2015), Spatial Queue (SQ) (Balmer et al. 2004; Breuer 2001) and Cell 

Transmission Model (CTM) (Daganzo 1995; Daganzo 1999). Though 

mathematically and practically simple, PQ and SQ are considered to 

underestimate the network congestion during the simulation (Zhang et al. 2013). 

CTM as a finite element approximation to the partial differential equation of 

fluid evolution is proved to best simulate the flow propagation on road segments. 

A vital issue exists for all dynamic flow evolution models, which is the 

unrealistic “gridlock” caused by improper routing behavior and misbehave of 

flow evolution models (Mahmassani et al. 2013).  

In this project, we adopt CTM to simulate the flow propagation on links, and the 

unrealistic gridlock condition is eliminated by calibrating behavior model 

parameters and network dynamic features. 

2.3 Off-line DTA 

Off-line DTA models have been thoroughly studied in recent years. According 

to the simulation resolution, there are three types: macroscopic, microscopic and 

mesoscopic DTA models. Mesoscopic model is considered to have great 

potentials for large-scale network simulation with satisfactory precisions. Two 

pioneers of mesoscopic off-line DTA are DNASMART (Jayakrishnan et al. 

1994) and DYNAMIT (Ben-akiva et al. 1998). Both softwares utilize density-

speed relationship function to calculate the position of vehicle and simulation 

the flow propagation, so they do not need to keep track of all vehicles. This 

simplification significantly reduces the computational complexity. 

For all off-line DTA models, an important issue is the trade-off between the 

simulation accuracy and running time. If a high accuracy is needed, then the 

running time will be almost implausible for large scale networks. Therefore, we 

need to tune the best simulation resolution as a compromise between 

computational efficiency and accuracy. 

2.4 On-line DTA 

While emerging Advanced Traveler Information Systems/Advanced Traffic 

Management Systems (ATIS/ATMS) technologies (Mahmassani 1998; Ben-

Akiva et al. 1991), which search for routing policies for travelers to achieve 

real-time network-wise optimum, require the DTA models take on-line data 

feeds and update management strategies in real time. DTA models that can take 

real-time data feeds is known as on-line DTA or real-time DTA. Researches of 

real-time DTA arise accordingly from different disciplines. After two decades’ 

development, real-time DTA models formulate various control mechanisms 
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which take different kinds of data feeds (travel time, traffic flow), adopt various 

controls (ramp metering, signal timing, VMS, routing) and achieve different 

objectives (user equilibrium, system optimal). 

The idea of real-time DTA originates from the field of optimal control, which 

assumes the observations of network are complete and travel demands and 

supplies are pre-determined. Studies (Papageorgiou 1990) build a node based 

DTA model and control the splitting rate to achieve system optimal or user 

equilibrium, linearization regulation of the original non-linear DTA model is 

also developed to handle the large scale network. They also develop 

METANET as a traffic routing and control framework. Similar real-time DTA 

problem is also settled by adjusting point diversion using linearization (Kachroo 

& Özbay 1998). Instead of open-loop framework, (Kachroo & Özbay 2005) 

further formulate a H∞ closed-loop feed-back control mechanism on splitting 

rate. Many other studies also attempt to dynamically control traffic by ramp 

metering (Zhang et al. 2001), signal timing (Mirchandani & Head 2001; Yang 

& Yagar 1995), routing guidance (Jahn et al. 2005) and dynamic message sign 

(DMS) (Shi et al. 2009; Mammar et al. 1996). Among them (Papageorgiou 

1995) provides an integrated framework to control traffic flows using all above 

methods. 

In real world, only partial network conditions can be observed and travel 

demands and supplies are usually unknown. Current/future traffic conditions are 

estimated/predicted and then reactive/predictive control are applied (Doan & 

Ziliaskopoulos n.d.). There are literature (Van Arem et al. 1993; Wang & 

Papageorgiou 2005) focusing on calibrating the supply parameters such as road 

capacity. Techniques such as ARMA (Hashemi & Abdelghany 2015), Kalman 

Filter (Wang & Papageorgiou 2005; Antoniou 2004) are also adopted in various 

models to predict future traffic conditions. Recently an approach called ``rolling 

horizon" is adopted to tackle network-wise general real-time traffic problem 

based on simulation software such as DYNASMART (Peeta & Mahmassani 

1995; Samaranayake et al. 2015), DynaMIT (Ben-Akiva & Bierlaire 2001), 

DynusT (Chiu & Mirchandani 2008). The methods estimate current traffic 

conditions and predict future conditions in each time interval (Zhou & 

Mahmassani 2007; Mahmassani 2001; Antoniou 2004), then the control policies 

are determined by the estimated/predicted traffic condition (Li et al. 2015; Du et 

al. 2014). 

Some of real-time DTA models are also implemented in commercial software 

such as PTV Optima1 and Aimsun2. Both softwares are able to provide real time 

                                           

1 http://vision-traffic.ptvgroup.com/en-uk/products/ptv-optima/ 

2 https://www.aimsun.com/ 
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information and provide forecasts on traffic conditions of entire networks. 

Aimsun has already built an Integrated Corridor Management (ICM) system 

within the I-15 corridor in San Diego County. The whole ICM system is fully 

automatic and equipped with various combinations of strategies such traveler 

information platform, traffic management and transit management. 

In this project, we develop a framework that takes the real time vehicle speed 

data feed as inputs and update the real-time O-D demand, as well as routing 

behavior. The predicted travel time along with routing guidance 

recommendation will be disseminated to the travelers by Variable Message 

Signs (VMS) and radio broadcasts. The model will be specially tailored for 

applications to the Philadelphia Metropolitan Region.  
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3. Data summary 

 
Figure 1 DVRPC Regional Map (retrieved from DVRPC website) 

Data from nine counties in the Delaware Valley Regional Planning Commission 

(DVRPC) region were collected for this project.  Figure 13 shows the 

geographical boundaries of the DVRPC region. Data obtained includes network 

topological data, historical O-D, traffic counts and traffic speeds. Since they 

were collected from different sources, we briefly discuss the format and 

contents for each data. 

3.1 Network topological data 

The nine-county network was obtained from DVRPC in the format of PTV 

Visum. The file contains 3,399 traffic analysis zones (TAZ), 90,083 junctions 

and 255,992 road segments. The network includes Bucks, Chester, Delaware, 

Montgomery and Philadelphia counties in Pennsylvania; and Burlington, 

Camden, Gloucester and Mercer counties in New Jersey. Figure 2 is a 

screenshot of the obtained network, and the colors represent different road 

levels. The road segments have attributes such as street names, street levels 

(highway, major arterials, minor streets, alleys, etc.), number of lanes, and 

speed limit. 

Together with the network file, the regional travel planning model (TIM2.1) 

from DVRPC was also contained in the same data file. The static traffic 

assignment model may help build our dynamic analytic model. 

 

                                           

3 http://www.dvrpc.org/img/homepage/DVRPC_Regional_Map.png, retrieved on 28th Oct 2015. 

http://www.dvrpc.org/img/homepage/DVRPC_Regional_Map.png
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Figure 2 Screenshot of DVRPC network 

3.2 History O-D 

The historical O-D demand data was also obtained from DVRPC in the format 

of VISUM. The O-D matrix is represented by a 3399 × 3399 matrix and in 

float precision. DVRPC also provided a main O-D pairs profile, which contains 

10,000 main O-Ds. O-D connectors are also contained in the TIM2.1 model, the 

total number of O-D connectors is 11,553,201. 

3.3 Traffic counts 

DVRPC provided us with 15-minute interval traffic volume counts data from 3rd 

Jan 2013 to 15th Oct 2015.  The data file has 568,524 rows; each row indicates 

the count of a 15-minute period on a certain day collected by a loop detector on 

various roadway segments. There are in all 3,565 different detectors, each 

detector has the information of its geographic location (latitude and longitude), 

and road name. However, the dates when those measurements were collected 

vary throughout the year.  

3.4 Traffic speed 

Travel speed data provided by INRIX were obtained from the Regional 

Integrated Transportation Information System (RITIS). The data set includes 

13,104 Traffic Management Channels (TMCs) for the nine counties of DVRPC. 

The data includes speed, travel time, historic average speed and reference speed 

(namely 85% quantile of all observed probe vehicle speeds, used as the free-

flow speed). All data are averaged into 15 minute intervals to meet the needs of 

our dynamic analytic model. 
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Due to the limitation that each exported file can have at most 5000 TMCs, we 

divided the region into three parts as show in Figure 3. Table 1 illustrates how 

we divided the region. The three areas have roughly the same number of TMCs. 

Table 1 is a sample data of the travel speed, consisting of tmc code (reference id 

for each TMC), measurement stamp time, speed, average speed and reference 

speed in miles per hour, travel time in miniutes, confidence score and cvalue 

The column ‘tmc_code’ can be matched with the road segments in the DVRPC 

TIM2.1 model. The column ‘measurement_tstamp’ indicates the measurement 

time of the speed. 

Table 1 Partition of TMCs 

Region Counties 
Number of 

TMCs 

Green region Chester, Delaware and Montgomery 4,373 

Yellow 

region 
Philadelphia and Bucks 4,011 

Purple region 
Burlington, Camden, Gloucester and 

Mercer 
4,720 

 
Figure 3 Partitions of TMCs in the modeling region 

Table 2 Sample data of travel speed 

tmc_cod

e 

measurement_t

stamp 
speed 

average_

speed 

reference_s

peed 

travel_time_mi

nutes 

confidence_

score 

cval

ue 

103+13

758 
1/1/2013 5:00 34 34 34 2.12 20 0 

103N11

940 
1/1/2013 5:00 34 34 36 0.01 20 0 

103P04

934 
1/1/2013 5:15 34 34 35 0.08 20 0 

103-

12881 
1/1/2013 5:15 39 39 39 2.15 20 0 
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3.5 Dynamic message sign (DMS) 

All the information about dynamic message signs on Philadelphia Metropolitan 

Region is provided by DVRPC. A brief description of the location of DMS and 

the coordinates are given in the file. The file also specifies the suggest detour 

link the DMSs.  
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4. Data preparation 

Network description files and traffic data sets for the nine counties of Delaware 

Valley Regional Planning Commission (DVRPC) region were collected for this 

project. The network description files are trimmed, consolidated and further 

coded into our state-of-art traffic simulation tools, and the traffic data sets are 

processed, smoothed and matched to each road segments.  

4.1 Network description 

The network for Philadelphia Metropolitan Area is from the Delaware Valley 

Regional Planning Commission (DVRPC) in the format of PTV Visum. The file 

contains 3,399 traffic analysis zones (TAZ), 90,083 junctions and 255,992 road 

segments. The network includes Bucks, Chester, Delaware, Montgomery and 

Philadelphia counties in Pennsylvania; and Burlington, Camden, Gloucester and 

Mercer counties in New Jersey. Figure 4 is a screenshot of the obtained network, 

and the colors represent different road levels. The road segments have attributes 

such as street names, street levels (highway, major arterials, minor streets, 

alleys, etc.), number of lanes, and speed limits. 

A network consolidation was conducted to trim the original network. The 

following steps were carried out to conduct the consolidation before the 

simulation: 

 We consolidated the network according to the road levels. The entire 

network was divided into 3 parts, for those areas far away from 

Philadelphia County, we retain the highways; for those areas neighbored 

with Philadelphia County, we retain the highways and major arterials; 

and we retain all the roads inside the Philadelphia County. 

 The network was then trimmed such that no “isolated" nodes and links 

exist. “Isolated" nodes are those who have only one forward link and one 

backward link, and the head node of the forward link is exactly the tail 

node of the backward link. Further, “isolated" links are the forward links 

and backward links of “isolated" nodes. The absence of such nodes and 

links does not affect the dynamic network analysis, but allows for a more 

precise estimation of network performance indicators. 

 We consolidated neighboring links with small lengths and the same speed 

limit. This process substantially reduced the network scale. More 

importantly, this was desirable to achieve more accuracy for the 

mesoscopic traffic flow models. 

Figures 4 and 5 present a comparison between the original network and the 

consolidated one, as can be seen, all the highways and major arterials are 

retained after the consolidation. Meanwhile we ensure the running time of the 
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dynamic traffic analysis within a short time interval (e.g., 5 minutes) for real-

time deployment in real-time DTA model. 

 
Figure 4 Before consolidation 

 
Figure 5 After consolidation 

4.2 O-D connectors 

The OD connectors are constructed based on the main zone information given 

in the DVRPC network, 214 traffic analysis zones (TAZs) are built in our 

analysis network. An origin dummy node and a destination dummy node were 

attached to each centroid. Therefore, the entire network contained 214 

origin/destination nodes with 473,796 O-D pairs. For each traffic zone, a select 

set of connector nodes from the original networks within the zone was 

constructed. A connector node is a real network node that is neither on the 

freeway (or equivalently, the speed limits of both its forward links and 

backward links are more than 55 miles per hour) nor on the freeway ramp, so 

that all traffic is assigned to surface streets in the large-scale network. 

Connector nodes were constructed in a different way from the regular method, 
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because trips are most likely to start and end on local streets. In addition, we 

made three or four connections between real network nodes (in the selection set) 

and those dummy nodes, rather than those centroids directly. This method 

ensures through traffic will never unrealistically use connectors to reduce travel 

time.  

Figure 6 represents the final network for dynamic analysis coded in our simulate 

tool, black links are actual road segments and green and blue links are origin 

connectors and destination connectors, respectively. 

 
Figure 6 Network visualization in simulation software 

4.3 Flow counts 

The flow counts raw data are provided from two sources. The first data set is 

from PennDOT, which contains the geo-location of sensors and the 1 hour 

traffic counts in a csv file; the second data set is from DVRPC, both geo-

information and counts are also encoded in a csv file. Since the sensor location 

is either geo-referenced by the street centerlines GIS system or global 

coordinate system (GCS), to match the counts to the network, an algorithm 

considering relative distance, angle and length was developed.  

We also smoothed the traffic flow counts into 15 minutes resolution by using 

linear interpolation. The missing data are either imputed or discarded based on 

a case by case review. Finally, both data were merged and reformatted for 

dynamic origin destination estimation (DODE). 
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4.4 Traffic speed 

Traffic speed data were also obtained from INRIX. The traffic speed data is 

provided at the geographic level of Traffic Message Channel (TMC), one of the 

geo-reference protocols. To match the traffic speed data with the links in 

DVPRC network, an algorithm considering relative distance and direction was 

developed to search for the best match of traffic speed. Finally, the speed data 

were smoothed and reformatted for DODE, which is detailed in the next section. 

Figure 7 represents the road segments with different kinds of traffic data. Green 

links are those with speed measurements, purple links are those with counts 

measurements. 

 
Figure 7 Speed and counts data measurements in the regional network 

4.5 Dynamic origin-destination estimation (DODE) 

Reliable dynamic origin-destination data are critical to the dynamic network 

analysis. However, “true" O-D data cannot be obtained directly in most cases. 

Therefore, we estimate time-dependent O-D demands from link flows (traffic 

counts collected by vehicle detectors) and traffic speed using a Dynamic Origin-

Destination Estimator (DODE). The objective of the DODE problem is to 

obtain a time-dependent O-D table (expressed in the form of time-dependent 
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path flows) that, once loaded onto the network, will reproduce observed link 

traffic counts and other observations as closely as possible. 

4.5.1 Methodology 

We adopt Logit Path Flow Estimator (LPFE) to derive path flows (hence an 

estimation of O-D demands). LPFE borrows the ideas of stochastic traffic 

assignment models which recognize that travelers are unlikely to get perfect 

information about network conditions. Therefore it is considered to be able to 

model individuals' route choice behaviors more realistically. 

In this project, the complete observations of traffic flows and speeds are 

obtained (under healthy conditions) from 1992 road segments. We estimated 

time-dependent O-D demands in 15 minute interval based on flow count data. 

We verified the accuracy of the estimated O-D demands by comparing the 

estimated link flow (based on estimated O-D demands) to the observed link ow 

(input). 

The O-D demands for both AM peak and PM peak are estimated separately by 

using data inputs from different time of day.  The total number of travel demand 

in PM is significantly higher than in AM, therefore we can conjecture that the 

network will get more congested during the PM peak. 

4.5.2 Morning peak 

As shown in Figure 8, the estimated link flows generally approximate the 

measured link flows, the average Root Mean Square Error (RMSE) for each 

interval is around 30. Several link flows are estimated to be zero since we didn’t 

enumerate paths due to the exponential path size in such a large scale network. 

Our model is capable of capturing the majority of the measured link flow 

information, so the dynamic O-D can be used to reproduce the recurrent traffic 

conditions in Philadelphia Metropolitan Region.  

 
      Figure 8a Interval 5:00 AM to 5:15 AM       Figure 8b Interval 5:15 AM to 5:30 AM     

Figure 8 Estimated vs. measured link flows in LPFE for AM peak 
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4.5.3 Afternoon peak 

Follow the same procedures, we estimate the dynamic O-D for afternoon peak. 

The amount of traffic flows and O-D demands are larger than those of in 

morning peak, which indicates the traffic conditions during afternoon peak is 

more severe than morning peak. Figure 9 picks two time intervals to present the 

errors between estimated flows and measured flows. The RMSE is larger than 

the morning peak since the absolute values of traffic counts are larger. 

 
Figure 9a Interval 3:00 PM to 3:15 PM    Figure 9b Interval 3:15 PM to 3:30 PM 

Figure 9 Estimated vs. measured link flows in LPFE for PM peak 

Further adjustments on dynamic O-D for both AM peak and PM peak are 

conducted during the model calibration. Several O-D demands are adjusted 

manually to better reproduce the measured traffic conditions. 
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5. Off-line DTA for Philadelphia Metropolitan Region 

The regional network, together with construction/road closure plans of I-95 

corridor, is coded into the dynamic network model. Baseline travel demand is 

estimated in the first place using the integrated traffic data (counts, INRIX data) 

on typical weekdays without the presence of large incidents. Under the actual I-

95 corridor construction/road closure plans, the change of traffic conditions can 

be estimated by simulating traffic in the calibrated dynamic network.  

Two time windows are analyzed for the Philadelphia Metropolitan Region: the 

AM peak and PM peak. AM peak represents the time horizon from 5AM to 

10AM in the morning, and PM peak represents 3PM to 8PM in the afternoon. 

The overall traffic impact for each scenario without deploying any real-time 

traffic management strategies can be measured by time-of-day traffic evolution 

in the region, as well as performance metrics, such as total traffic delay, average 

travel time, emissions, energy use, vehicle-miles travelled, etc. 

Detailed information for each road segment is also available after applying the 

model. The most impacted highways and arterials under each scenario are 

identified, along with possible explanations and suggestions. Travel times 

between selected origin-designation pairs in each scenario are also compared to 

gain for insights and prediction power. 

5.1 Methodology 

A mesoscopic network simulation framework is used to evaluate the network 

under different settings. Before the simulation can be done, we need to calibrate 

the model with the observed data. We tune the properties of road segments such 

that the simulation results are consistent with the obtained speed/counts data in 

those measured locations. 

Additionally, it is possible that the simulation terminates unsuccessfully because 

sometimes the network loading produces “grid-lock", a notorious condition 

defined as the inability of vehicles to move. This is a common issue in 

mesoscopic network simulation and will lead the simulation to fail.    

By trial-and-error, we calibrated the parameters of link properties and routing 

behavior such that the simulations can succeed without a gridlock and 

meanwhile produce traffic conditions as close as possible to the observed data.  

In the remaining part of this section, the simulation results on the calibrated 

network will be presented. After the calibration work, we see that the simulation 

model yields good results.   

5.2 Morning peak 

Figure 10 shows the simulated counts and speed versus observed counts for 

major roads throughout the entire network. Ideally, the scatter should be around 
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the line of x=y. We got R2 = 0.54 for counts and R2=0.88 for speed. This means 

that globally, the simulation model has a good performance.  

 

     Figure 10a Simulated counts vs. observed counts      Figure 10b Simulated speed vs. observed speed 

Figure 10 Simulated traffic characteristics vs. observed traffic characteristics for morning 

We also compare the simulation results to the actual traffic speed measurements 

on a typical weekday in various locations of the region.  Generally the 

calibrated model has a good ability to reproduce the evolution of the traffic in 

the real world. For example, Figure 11 shows the measured speed from Google 

Map and the simulated speeds in a local area in the morning. The simulated 

spatial distribution of speed is consistent with the actual distribution.  

 
      Figure 11a Actual speed (source: Google Maps)       Figure 11b Simulated speed 

Figure 11 Local speed distributions at 7 am around I-76 

5.3 Afternoon peak 

Similar to the morning peak model, we tune the network properties for the 

afternoon peak for the simulation generally reproducing the actual observation. 

Figure 12 shows the simulated counts and speed versus observed counts for 

major roads throughout the entire network. We got R2 = 0.54 for counts and 

R2=0.85 for speed. In figure 13, the spatial speed distribution for area near I-76 

is extracted from Google Map and simulated results.  
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Figure 12a Simulated counts vs. observed counts      Figure 12b Simulated speed vs. observed speed 

Figure 12 Simulated traffic characteristics vs. observed traffic characteristics for afternoon 

 
Figure 13a Actual speed (source: Google Maps)  Figure 13b Simulated speed 

Figure 13 Local speed distributions at 6 pm around I-76 

5.4 Scenarios settings 

In this section, we will summarize the scenarios which we had studied. As 

discussed with PennDOT, three scenarios are identified.   

 Both directions of I-95 closed in the focused limits; 

 Northbound of I-95 closed at the focused limits; 

 Southbound of I-95 closed at the focused limits. 

The scenarios will be studied in two time periods on a typical day: 

 Morning peak hours: from 5 am to 10 am; 

 Afternoon peak hours: from 3 pm to 8 pm. 

Hence together with the two baseline cases, there are in all eight scenarios to 

analyze. The settings of the eight scenarios are summarized in table 3. 
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Table 3 Scenario settings 

Scenario 

index 
Scenario name Road closure Time of day 

1 Morning baseline Null 5am-10am 

2 Morning SB closure 
Southbound 

closed 
5am-10am 

3 Morning NB closure 
Northbound 

closed 
5am-10am 

4 Morning both closure 
Both directions 

closed 
5am-10am 

5 Afternoon baseline Null 3pm -8pm 

6 Afternoon SB closure 
Southbound 

closed 
3pm -8pm 

7 
Afternoon NB 

closure 

Northbound 

closed 
3pm -8pm 

8 
Afternoon both 

closure 

Both directions 

closed 
3pm -8pm 

 

The settings of the scenarios are encoded into the simulation model. Figure 14 

shows the location of the closed segment in map and in simulation model 

respectively. In the simulation model, a road closure is modeled as setting the 

corresponding road segment’s capacity and free flow speed to 0 so that no 

vehicles were able to enter this road. 

 
Figure 14a Road closure in Map        Figure 14b Road closure in simulation model 

Figure 14 Road closure in map and in model 

5.5 Morning peak network performance 

Four scenarios were conducted to estimate the existing network performance 

and predict the performance after the I-95 corridor closure during the morning 

peak. We compare the baseline scenario with the other three closure scenarios 

to evaluate the traffic impact of corridor closures. 
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5.5.1 Overall performance 

The simulation profile for the baseline scenario is shown in Figure 15, where 

blue, green and red lines represent the changes in the number of en-route 

vehicles, moving vehicles and queued vehicles, respectively, during the 

simulation horizon. This profile provides general information regarding time-of-

day network traffic conditions. 

As can be seen, the congestion in the network increases from 6:30 AM and 

peaks at 8:00 AM, and levels off all the way till 9:00 AM. The total number of 

trips loaded on the network achieves its peak around 7:50 AM, and drops a bit 

afterwards. The simulation stops releasing vehicles after 10:00 AM, and the 

entire simulation terminates at about 13:00 PM, which indicates that there are 

quite a few long distance vehicles through Philadelphia. 

 
Figure 15 Simulation profile for morning peak baseline 

The simulation results on the network performance in four scenarios during the 

morning peak (5:00am -10:00 am) are shown in Table 4.  

Table 4 Total network performance for four scenarios from 5:00am to 10:00am 

Item 
Tot. Number of 

Trips 

Tot. Travel 

Time 

Avg. 

Travel 

Time 

Tot. Delay 
Avg. 

Delay 

Avg. 

Travel 

Distance 

VMT 

Unit Vehicle Hour Minute Hour Minute Mile Mile 

Baseline 1,382,625 739,132.02 32.08 196,584.1 8.53 20.33 28,108,302 

Northbound 

Closure 
1,382,625 754,097.3 32.72 

209,221.4

9 
9.08 20.37 28,162,087 

Change by 

percentage 
0.00% 2.02% 2.00% 6.43% 6.45% 0.20% 0.19% 

Southbound 

Closure 
1,382,625 793,725.54 34.44 

247,197.7

3 
10.73 20.39 

28,197,359.

6 

Change by 

percentage 
0.00% 7.39% 7.36% 25.75% 

25.79

% 
0.30% 0.32% 
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Both Closure 1,382,625 806,418.82 35 
258,457.3

3 
11.22 20.48 28,206,580 

Change by 

percentage 
0.00% 9.10% 9.10% 31.47% 

31.54

% 
0.74% 0.35% 

 

Generally, the network becomes more congested after the corridor closure. The 

total number of trips remains the same, because we assume the traffic demands 

are mainly composed of commuters who do not cancel trips in the morning peak. 

The Vehicle-Mile-Traveled (VMT) and average travel distance will increase 

since travelers may detour to a slightly longer route.  

The average travel time and total travel time (namely Vehicle-Hour-Traveled, 

VHT) will increase as well in each closure scenario. The main reason is that the 

vehicles used to use I-95 will detour to other highways or corridors, which make 

those roads become more congested. As a result, the overall performance of the 

network is more congested. Increasing more vehicles on those roads will lead to 

a worse road performance, which leads to a longer travel time. In the morning 

peak, since the number of vehicles on I-95 southbound is larger than that of 

northbound, the southbound closure is more congested than the northbound 

closure scenario. The scenario of both southbound and northbound closures is 

the most congested case. 

5.5.2 Emissions 

The simulation results on the emissions for the four scenarios during morning 

peak are shown in Table 5. The changes in emissions of CO2, HC, CO and 

NOX before and after the corridor generally follow a similar pattern to that of 

VMT. While the emissions are also relevant to the average speed and 

acceleration of vehicles, the exact values may vary in different scenarios. In 

general, the I-95 corridor closure will lead to an increase of emission and fuel 

consumption. 

Table 5 Total network performance for four scenarios from 5:00am to 10:00am 

Item Fuel CO2 HC CO NOX 

Unit Gallon Ton Ton Ton Ton 

Baseline 914603.32 8117.1 20.58 34.5 31.19 

Northbound Closure 916943.67 8137.88 20.8 34.51 31.27 

Change by percentage 0.26% 0.26% 1.07% 0.03% 0.26% 

Southbound Closure 918947.74 8155.66 21.02 34.60 31.39 

Change by percentage 0.48% 0.48% 2.14% 0.29% 0.64% 

Both Closure 918745.1 8153.86 21.01 34.65 31.41 

Change by percentage 0.45% 0.45% 2.09% 0.43% 0.71% 
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5.5.3 Delay on selected road segments 

To evaluate the impact of the closure on specific road segments, 20 road 

segments near the closure corridor were chosen. Most of them are interstate 

highways. The layout of these roads is shown as in Figure 16. Both directions of 

each road segments will be evaluated. These roads are numbered from 1 to 20.  

 
Figure 16a Chosen roads near the closure corridor      Figure 16b Chosen roads farther from the corridor 

Figure 16 Chosen roads for analyzing travel time change 

Table 6 summarizes the percentage change of travel time of each scenario 

compared to the baseline scenarios. This percentage change is, in fact, an 

indicator of the change in delay. The first column shows the number of each 

road segments, corresponding to those numbers in Figure 16. The second 

column lists the names of these roads. The third column shows the direction of 

that road segment. From the fourth column on is the travel time in the baseline 

case in minutes and the percentage change in average travel time of each 

scenario compared to the baseline scenario. The average travel time was taken 

over all travelers who used this road segment in our 5-hour analysis period.  

Note that the zero change in the table means the road segments are not 

congested throughout the whole analysis period. In other words, the traffic 

demand for these road segments is relatively small. The signs of the percentage 

changes imply how travelers’ routes are changed after the closure. For example, 

for the northwest bound of I-90, the travel time increased when southbound of 

the corridor is closed, while in the other two closure scenarios, the travel time 

decreases. If the northbound of the corridor was closed, travelers who want to 

go the northeast and are used to use I-95 switch to use I-676, which leads a drop 

in travel time on I-95 and an increase on I-676.  

 

 

 



26 

 

Table 6 Travel time change of selected road segments for four scenarios from 5:00am to 10:00am 

Number Road Direction 
Average travel time Percentage change of average travel time 

Baseline/min Southbound Northbound Both 

1 I76 
NW 1.89 28.63% -68.76% -68.41% 

SE 1 0.00% 0.00% 0.00% 

2 I76 
NE 0.61 69.42% 23.60% 7.41% 

SW 0.17 0.00% 0.00% 0.00% 

3 I676 
NW 0.94 73.98% -53.56% -53.56% 

SE 0.53 -4.73% -10.15% 47.05% 

4 I95 
N 0.53 18.96% 0.00% 0.00% 

S 0.5 41.16% -10.92% -10.92% 

5 I676 
W 8.92 58.46% 135.89% 120.12% 

E 1.51 54.48% -0.90% 41.14% 

6 I676 
S 0.81 -23.88% -49.93% -62.10% 

N 1.68 -87.35% -87.35% -87.35% 

7 I95 
NE 1.82 0.00% 0.00% 0.00% 

SW 5.59 -7.61% 66.98% 56.59% 

8 I90 
NW 9.61 -22.71% 38.38% 18.19% 

SE 1.88 0.00% 2.41% 0.00% 

9 PA611 
SW 0.19 0.00% 26.69% 12.54% 

NE 0.19 0.00% 0.00% 0.00% 

10 PA611 
NE 0.46 -41.76% -44.21% -44.42% 

SW 0.2 0.00% 0.00% 0.00% 

11 US1 
SW 3.92 -1.60% -10.66% -3.81% 

NE 1.20 -9.15% 0.67% 59.39% 

12 US13 
NE 0.49 121.52% 0.00% 13.69% 

SW 4.30 13.60% 8.19% 16.88% 

13 I295 
SW 1.55 -8.20% -12.01% -10.40% 

NE 1.53 13.06% 7.35% 23.51% 

14 I295 
SW 1.00 -0.41% 0.00% 0.00% 

NE 0.96 0.00% 0.00% 0.00% 

15 I76 
SE 0.99 0.00% 0.00% 0.00% 

NW 2.15 5.46% -14.67% 2.07% 

16 I95 
SW 1.30 0.00% 0.00% 0.00% 

NE 0.03 0.00% 0.00% 0.00% 

17 US130 
SW 1.28 3.42% 117.22% 53.92% 

NE 0.94 0.00% 6.74% 0.00% 

18 I76 
NW 3.47 6.28% 1.89% 2.32% 

SE 2.40 24.17% 35.23% 82.92% 

19 I276 
NW 0.45 0.00% 0.00% 0.00% 

SE 0.32 0.00% 0.00% 0.00% 

20 I476 SE 2.10 0.00% -0.04% -0.26% 
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NW 2.09 0.00% 4.85% 0.00% 

We see that I-76 Southbound (Road segment No. 1 and No. 2) was not impacted 

by the closure. Northbound of road segment No. 9 (part of PA611) and 

southbound of road No.10 (part of PA611) were not affected much either.  

The road segment that is impacted most is the westbound of I-676 (road 

segment No.5). Due to the I-95 closure, travelers who drive to downtown from 

the north and are used to use I-95 now need to detour through I-676. Those 

travelers may also switch to I-76 (Road segment No.18) for detours, which 

increased its travel time as well.   

5.5.4 Change in travel time between ODs 

Besides the network performance indicators and time-varying traffic flow 

characteristics for any location, the simulations also yield the travel time 

between any two TAZs under the eight scenarios. We select several 

representative O-D pairs to compare the travel time for the four scenarios, the 

representative O-Ds are shown in Figure 17. 

 
Figure 17 Selected OD pairs in Philadelphia Metropolitan Region 

We compute the travel time for all the combinations of representative O-Ds for 

four scenarios, the complete results can be found in Appendix A. Here we select 

several representative results in Table 7. 

The travel time from Trenton to the University of Pennsylvania will increase 

after the I-95 closure, especially after the closure of both directions of the I-95. 

The main reason is that the fastest route for this O-D pair is I-95, the travel time 

for any alternative routes are much higher than the I-95 route, so the travel time 
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after the closure will significantly increase. For the travel time from Wilmington 

to Philadelphia downtown, since the original route does not contain the I-95 

corridor, the travel time will not change as much after the closure.  

The result on the travel time from the University of Pennsylvania to Wilmington 

is quite interesting. During 7:00am to 8:00am, the travel time is getting slightly 

worse since the closure will make the network more congested in general, so the 

route between this O-D pair is also affected. However, during 8:00am to 9:00am, 

since the north part of I-95 is closed, there are fewer vehicles in the south part 

of I-95 (both directions). The fastest route contains the south part of I-95, and 

thus it will be smoother to drive on the south part of I-95, resulting in a less 

travel time. 

Table 7 Travel time change of selected ODs for four scenarios from 5:00am to 10:00am (minutes) 

Origin Destination 
Time 

Interval 

Base

line 

I-95 south 

closure 

I-95 north 

closure 

I-95 both 

closure 

Trenton 
University of 

Pennsylvania 

7:00 - 

8:00 
44.9 44.9 49.4 53.1 

Trenton 
University of 

Pennsylvania 

8:00 - 

9:00 
45.6 47.3 53.3 53.9 

Wilmington 
Philadelphia 

Downtown 

7:00 - 

8:00 
31.9 31.9 31.9 31.9 

Wilmington 
Philadelphia 

Downtown 

8:00 - 

9:00 
31.9 32.9 31.9 31.9 

University of 

Pennsylvania 
Wilmington 

7:00 - 

8:00 
34.2 34.2 32.2 33.1 

University of 

Pennsylvania 
Wilmington 

8:00 - 

9:00 
34.5 34.5 32.2 32.2 

5.6 Afternoon peak network performance 

5.6.1 Overall performance 

 
Figure 18 Simulation profile for morning peak baseline 
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The simulation profile for the afternoon peak baseline scenario is shown in 

Figure 18. As can be seen, the congestion in the network increases from 14:00 

PM and peaks at 17:45 PM, and levels off all the way till 19:00 PM. The total 

number of trips loaded on the network achieves its peak around 17:50 PM, and 

drops a bit afterwards. The simulation stops releasing vehicles after 20:00 PM, 

and the entire simulation terminates at about 1:00 AM, which indicates that 

there are quite a few long distance vehicles through Philadelphia and several 

links are discharging vehicles in an unrealistic speed. This is a common issue 

caused by CTM when the network is over saturated, but this issue will only 

affect a small portion of vehicles so the general behavior of the simulation can 

still reproduce the current traffic. 

The simulation results on the network performance in four scenarios during the 

morning peak (15:00pm -20:00pm) are shown in Table 8.  

Table 8 Total network performance for four scenarios from 15:00pm to 20:00pm 

Item 
Tot. Number of 

Travels 
Tot. Travel 

Time 

Avg. 

Travel 

Time 

Tot. Delay 
Avg. 
Delay 

Avg. 

Travel 

Distance 

VMT 

Unit Vehicles Hour Minute Hour Minute Mile Mile 

Baseline 1,638,222 1,041,517.92 38.15 421,667.31 15.44 19.61 32,132,274 

Northbound 

Closure 
1,638,222 1,0717,56.91 39.25 447,446.24 16.39 19.68 32,238,986 

Change by 

percentage 
0.00% 2.90% 2.88% 6.11% 6.15% 0.36% 0.33% 

Southbound 
Closure 

1,638,222 1,123,642.84 41.15 499,238.01 18.28 19.68 32,233,924 

Change by 

percentage 
0.00% 7.89% 7.86% 18.40% 

18.39

% 
0.36% 0.32% 

Both Closure 1,638,222 1,140,006.33 41.75 513,806.06 18.82 19.68 32,247,227 

Change by 
percentage 

0.00% 9.46% 9.44% 21.85% 
21.89

% 
0.36% 0.36% 

As can be seen, the network becomes more congested after the corridor closure. 

The changes in average travel distance and VMT are similar to that in the 

morning peak. The percentage change in the delay for the I-95 southbound 

closure scenario is higher than that of the I-95 northbound closure scenario. 

This is possibly due to the oversaturation on the I-95 northbound in the baseline 

scenario. When the I-95 northbound is closed, flow switches to other alternative 

routes, which results in the same congestion level and travel time. I-95 

southbound is not as bad as the northbound during the PM peak. If the I-95 

southbound is closed, the system performance can reduce more prominently 

than closing the already oversaturated northbound. 

5.6.2 Emissions 

The simulation results on the emissions for the four scenarios during morning 

peak are shown in Table 9. The changes in emissions of CO2, HC, CO and 
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NOX before and after the corridor generally follow a similar pattern to that of in 

AM peak. 

Table 9 Total network performance for four scenarios from 15:00pm to 20:00pm 

Item Fuel CO2 HC CO NOX 

Unit Gallon Ton Ton Ton Ton 

Baseline 1047483.49 9296.42 23.82 39.55 35.8 

Northbound Closure 1051571.08 9332.69 24.14 39.63 35.96 

Change by percentage 0.39% 0.39% 1.34% 0.20% 0.45% 

Southbound Closure 1052208.63 9338.35 24.33 39.63 36.01 

Change by percentage 0.45% 0.45% 2.14% 0.20% 0.59% 

Both Closure 1053393.72 9348.87 24.54 39.7 36.11 

Change by percentage 0.56% 0.56% 3.02% 0.38% 0.87% 

5.6.3 Delay on road segments 

The same 20 road segments were examined as we did for the morning peak.  

The percentage change in travel time is shown in table 10.  

For most road segments, the signs of percentage change are the same as in the 

morning. An apparent difference is that, the traffic congestions of northbound 

closure appear much more severe in the afternoon than in the morning. Note 

that for southbound of PA611 (Road segment No.9) and northbound (road 

segment No.10), the travel time increases dramatically under the northbound 

closure, especially for PA611 southbound. It implies that users may switch to 

PA611 from I-95.  

Table 10 Travel time change of selected road segments for four scenarios from 15:00pm to 20:00pm 

Number Road Direction 
Average travel time Percentage change of average travel time 

Baseline/min Southbound Northbound Both 

1 I76 
NW 1.89 -6.89% 11.84% 13.20% 

SE 1 0.00% 46.52% 0.00% 

2 I76 
NE 0.61 -7.59% 61.22% 51.91% 

SW 0.17 -55.04% 64.73% -48.59% 

3 I676 
NW 0.94 4.51% 30.04% -47.43% 

SE 0.53 13.68% 159.11% 82.48% 

4 I95 
N 0.53 10.72% 16.00% 31.01% 

S 0.5 -14.23% -10.31% -12.54% 

5 I676 
W 8.92 6.10% 41.43% 15.19% 

E 1.51 28.19% 22.72% 99.24% 

6 I676 
S 0.81 31.04% 159.61% 90.93% 

N 1.68 0.00% 0.00% 8.09% 

7 I95 NE 1.82 0.00% 0.00% 0.00% 
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SW 5.59 82.10% 5.13% 84.97% 

8 I90 
NW 9.61 63.27% 15.87% 53.81% 

SE 1.88 1.84% 0.00% 0.00% 

9 PA611 
SW 0.19 22.06% 196.61% 66.27% 

NE 0.19 0.00% 0.00% 50.04% 

10 PA611 
NE 0.46 -17.68% 103.56% 1.64% 

SW 0.2 0.00% 5.69% 28.49% 

11 US1 
SW 16.90 -1.60% -21.91% -16.62% 

NE 2.09 -9.15% 128.26% 246.52% 

12 US13 
NE 0.49 121.52% 93.39% 158.16% 

SW 13.80 13.60% -31.73% -2.45% 

13 I295 
SW 3.46 -8.20% 10.57% -2.55% 

NE 3.16 13.06% -2.49% -42.55% 

14 I295 
SW 1.00 -0.41% 5.66% 7.30% 

NE 0.96 0.00% 0.00% 0.00% 

15 I76 
SE 0.99 0.00% 197.27% 225.33% 

NW 4.00 5.46% -5.88% -3.76% 

16 I95 
SW 1.30 0.00% 0.00% 0.00% 

NE 1.50 0.00% 0.00% 0.00% 

17 US130 
SW 1.29 3.42% -1.35% 16.63% 

NE 0.94 0.00% 0.00% 0.00% 

18 I76 
NW 7.37 6.28% 17.54% 19.41% 

SE 3.72 24.17% 34.14% 98.66% 

19 I276 
NW 0.45 0.00% 0.00% 0.00% 

SE 0.32 0.00% 0.00% 0.00% 

20 I476 
SE 2.10 0.00% 0.00% 0.00% 

NW 2.09 0.00% 0.00% 0.00% 

 

It also indicates that the percentage change in travel time on I-95 is significantly 

different between the two segments. The segment far south from the closure 

area have a lower travel time than the baseline due to less through traffic on I-

95, while the travel time for the segment north of the closure area increases 

substantially.  

Northbound of Route 1 (road segment no.11) and Route 13 (road segment no.12) 

have sharp increases in travel time, different from the morning case. This 

indicates that in the afternoon, more travelers travel from the southwest of 

Philadelphia downtown to the northeast of Philadelphia downtown. Those 

travelers switch from I-95 to I-76 or Route 1. 
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5.6.4 Change of travel time between O-Ds 

We also computed the travel time for all the combinations of representative O-

Ds in Figure 12 for four scenarios during the PM peak, the complete results can 

be found in Appendix B.  

The general findings for the travel time change is that: if the chosen route before 

I-95 closure contains I-95, then the travel time for that O-D pair will 

significantly increase after the closure unless there exist alternative detour 

routes that are comparable to I-95. For those O-D pairs that do not contain I-95 

but are along the detour routes of I-95, then their travel time is slightly 

influenced by the closure. For those travelers along the O-D pairs located on the 

south of I-95, the closure may even benefit them due to the reduced volume on 

I-95 south of downtown.  

5.7 Conclusions  

In off-line DTA modeling of this project, we conducted a dynamic network 

analysis for Philadelphia Metropolitan Area and studied the traffic impact of the 

I-95 corridor closure for both morning and afternoon peaks.  

We utilize the network description files provided by DVPRC, archived traffic 

flow data by PennDOT and DVPRC, and traffic speed data from INRIX to 

validate the off-line dynamic traffic assignment model. We use the calibrated 

model to predict and evaluate the traffic impact of I-95 corridor closures. 

System performance, traffic delay on critical road segments and travel time 

between selected O-Ds are compared and analyzed, which help better 

understand the network conditions with and without I-95 closures. 

In this part, we only calibrated the baseline scenario and predict the traffic 

conditions for different I-95 closure scenarios for both AM and PM peaks, but 

no management and operational strategies are made to reduce the traffic 

congestion caused by the I-95 closure. In next section, we will design a 

methodology to simulate the traffic on the real time basis. An on-site detour 

strategy through Dynamic Message Signs (DMS) will be proposed to suggest 

efficient detour routes, optimal traffic diversion ratios and text displays for 

DMS. 
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6. Real-time DTA for Philadelphia Metropolitan Region 

In this section we develop a regional dynamic network model that simulates 

millions of trips in the Philadelphia metropolitan region and captures those 

travelers’ travel behavior on real-time basis. It can be applied directly to predict 

traffic impact of planned and unplanned incidents, and provide real-time 

decision making for traffic operations. 

The model takes incident reports and traffic speeds as real-time data feeds, and 

O-D demands as the historical data feeds. The management strategy is adjusted 

in the real time to achieve overall best performance for the entire network. The 

model contains a closed-loop feedback learning mechanism, the 

estimation/prediction accuracy will improve as the model runs. 

In the case study, the model is developed to control all the dynamic message 

signs (DMS) on I-95 corridor. On-site detour strategies through DMS will be 

proposed to suggest efficient detour routes, optimal traffic diversion ratios and 

texts for DMS. The real-time optimal compliance rates for each detour route can 

be updated as time progresses by analyzing real-time traffic data (INRIX and/or 

counts) and provided to PennDOT Transportation Management Center on the 

real-time basis. 

The model is implemented as an internet web application, a website built to 

visualize the control strategies and animate the flow evolutions. All the user 

interactions with the real-time traffic management model are based on browser. 

6.1 Network settings 

In this section we discuss the preparations especially for building the real-time 

traffic management framework.  

6.1.1 Dynamic network loading 

Dynamic network loading (DNL) model is an essential component in real-time 

DTA model. DNL models take time-dependent O-D demand and travelers' 

behavior parameters as input and simulate the network conditions with a high 

spatial-temporal resolution. The traffic flow, travel time of every links and 

trajectory of every vehicle can be recorded during the simulation. We denote the 

simulation process as: 

St+1 = DNL(q, p, St) 

Where St is the traffic state of the whole network on time t, q is the O-D 

demand vector and p is the route choice probability of each route. After the 

DNL for one interval, we have the network condition on time t + 1, denoted as 

St+1. 

Two major components in DNL models are link flow evolution models and 

node flow evolution models. The link flow evolution models describe the 
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dynamic relationship between vehicle density, speed and volume for one road 

segment. Cell transmission model (CTM), as a finite element approximation to 

the partial differential equation of fluid evolution, is proved to best simulate the 

flow propagation on road segments. This project adopts CTM to simulate the 

flow propagation on links. Node flow evolution models depict the traffic flow 

propagation (merge and diverge) on junctions. A simple node model (Jin & 

Zhang 2003) that satisfies the “fairness” condition  is adopted. The adopted 

node model is proved to have high-throughput and is computationally efficient. 

The DNL model is implemented under C++. The dependency management is 

due to CMake.  

6.1.2 Real-time traffic speed measurements 

Traffic speed data were obtained from INRIX4. The traffic speed data is 

provided at the geographic level of Traffic Message Channel (TMC), one of the 

geo-reference protocols. To match the TMC units with links in the road network, 

an algorithm considering relative distance and direction was developed to 

search for the best match for each TMC.  

Traffic speed data cover most of the corridors and major roads in Philadelphia 

Metropolitan Region. The data set includes 13,104 TMCs for the nine counties 

of DVRPC. The data includes speed, travel time, historic average speed and 

reference speed (namely 85% quantile of all observed probe vehicle speeds, 

used as the free-flow speed). 

INRIX provides an API to let users request the real-time traffic speed data feeds 

nation-wide. We implemented a crawler to continuously retrieves, processes, 

summarizes the real-time traffic speed and reports the results to the traffic 

management server. 

6.1.3 Path set generation 

The paths for each O-D pair are pre-determined before the real-time traffic 

management. To generate paths for one O-D pair, we execute the shortest path 

algorithm from origin to destination under different traffic conditions: light, 

heavy and congested. The path set contains paths for all different pairs of O-D. 

For DVPRC network, totally 189,065 paths are generated for 473,796 O-D pairs. 

6.2 DMS based real-time network flow model 

In this section we present the proposed real-time traffic management model. We 

first overview its structure and define each component in the model, then we 

formulate and interpret each component separately. The solution algorithm to 

each proposed component is also provided. 

                                           

4 INRIX, http://www.inrix.com 
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6.2.1 Overview 

Figure 19 is the overview of the real-time traffic management model, the model 

is based on a closed-loop feedback-learning mechanism. In each interval, the 

management model takes real time speed, historical O-D and capacity drop 

report as input, and then estimates the current traffic condition of the whole 

network, optimizes the future network condition by adjusting the route choice 

probability. According to the optimized future route choice probability, DMS 

messages are generated to suggest travelers selecting the system optimal route. 

Since only some of the travelers will follow the instruction on DMS, we define 

the compliance rate to be the portion of travelers following the instruction. The 

compliance rate is assumed different for difference DMS. The compliance rate 

is updated by the estimated current traffic conditions and last interval's 

instruction. Finally the traffic prediction for next one hour is simulated by using 

current route choice probability, optimized route choice probability and updated 

compliance rate. After the whole iteration form the server, the prediction results 

and DMS messages are stored in the database, then the browser will retrieve the 

results from database and visualize it on the internet. 

 
Figure 19 Overview of real-time traffic management framework 

To further explain each component of real-time traffic management framework, 

we suppose current time is 8:15, and then the model will: 
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 Acquire data: acquire the real-time traffic speed and incident reports in 

[8:00, 8:15] 

 Estimate Previous: estimate the route choice probability in [8:00, 8:15] 

 Compliance rate update: update the DMS compliance rate calculated in 

[7:45, 8:00] 

 Optimize Next interval: optimize the route choice probability in [8:15, 

8:30] 

 Generate DMS Message: based on the optimized and estimated route 

choice, generate DMS message for [8:15, 8:30] 

 Predict Future: Predict traffic state in next one hour using updated 

compliance rate 

 Next interval: Wait until current time is 8:30, go back to acquire data 

In the following sections, we discuss each component in detail, we 

assume the current interval is t + 1. 

6.2.2 Traffic state estimation for the current stage 

In the current traffic state estimation component, we want to find the current 

travelers' route choice probability that makes DNL model better reproduce the 

observed traffic speed. So the formulation is to minimize the errors between 

observed traffic speed ta
o and simulated traffic speed ta. ta is obtained from the 

simulated network condition St+1, the function Ta(⋅) is the travel time retrieval 

function to get travel time on link a from simulated network conditions. The 

overall formulation for estimating current traffic state is as follows. 

 

The first constraint in the formulation requires the sum of route choice 

probability for one O-D pair is 1, r represents the origin, s represents destination 

and k represents path. The second constraint requires all route choice 

probabilities are non-negative. The third constraint indicates that the current 

traffic condition St+1 is simulated from traffic state of last interval with demand 

q and route choice probability. Different route choice probability will result in 

different link travel time ta. The whole formulation searches for the best p 

which approximates the observed link travel time ta
o best. 
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After solving the above formulation, the solved route choice probabilities 

represent travelers' behavior in current interval. By running the DNL model 

with route choice probability p and O-D demand q, current traffic conditions on 

every link can be retrieved. 

Since DNL(q, p, St) is a simulation process, which can't be analytically 

decomposed, above formulation is a hard non-linear optimization problem. 

Analytically calculating the derivative of the objective function is impossible, 

the numerical derivative can still be calculated (Qian et al. 2012). Qian 

proposed the method to numerically calculate the derivative of path flow, by 

chain rule the derivative of route choice probability can also be obtained. The 

chain rule is formulated as follows: 

 

6.2.3 Traffic state optimization for future stages 

In the sub-problem of optimizing future traffic state, we search for the best route 

choice probability for all O-D pairs such that the total travel time in the whole 

network is minimum. The optimization is formulated as follows: 

 

The first two constraints are the same as those in the former formulation, the 

third constraint indicates we use the estimated current state St+1 as input and 

simulate the future interval St+2. Ta and Xa are link travel time and link flow 

retrieval function, respectively. The formulation above searches for the best 

route choice probability p such that the total network travel time on interval t+2 

is minimized. 

After solving the above formulation, the solved route choice probability 

represents the best route choice probability for the next interval. However, since 

we cannot directly control travelers' route choice, we can only use DMS 

messages to suggest the best route for travelers. If the compliance rate is high, 

the network approaches more to the system optimal. 
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Similar with former formulation, the numerical derivative of the objective 

function can be calculated from the simulation (Qian et al. 2012). Though 

objective function is different, the solution algorithm is almost the same. 

6.2.4 Feedback learning of compliance rate 

The feedback learning of compliance rate is based on the estimated route choice 

calculated in interval t, detour instruction generated in interval t and estimated 

route choice calculated in interval t+1. Both route choice probability represent 

the estimated current traffic state, but the former is the results for interval t and 

latter is the results for interval t+1. We denote the former as pt and latter as pt+1. 

So the new compliance rate can be calculated by comparing pt, pt+1 and  detour 

link adetour. Define I(⋅) is an indicator function, the compliance rate for DMS d, 

cd can be calculated as: 

 

A method of successive averaging (MSA) mechanism can be adopted to update 

the compliance rate in each interval. 

According to the definition of compliance rate, it represents the portion of 

travelers that follow the DMS instruction. If all travelers follow the instruction, 

then prs
k = 0 if adetour is not in path frs

k . The feedback learning sub-problem can 

be done after the current state estimation sub-problem, it is independent with the 

future traffic state optimization sub-problem. 

6.2.5 DMS message generation 

The generation of DMS message is based on the estimated route choice 

probability pest and optimized route choice probabilitypopt. For link a, if the 

optimized link flow is smaller than the estimated route flow, then it means some 

travelers shouldn't take link a, therefore a detour is suggested. 

Our model is based on such criterion to decide whether travelers are supposed 

to take the detour on certain links. After calculated the detour link (or decide not 

to detour), the message generation rule is as follows: 

 If the congestion is ahead and the travelers on the highways are 

supposed to take the detour, the message will be “CONGESTION 

AHEAD, XX MINUTES TO NEXT EXIT, TAKE NEXT EXIT”, paired 

with a disclaimer message for traffic engineers, “if taking exits is 

suggested, it should be paired with DMS on the arterials guiding 

drivers”. 
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 If the congestion is ahead but the travelers on the highways should still 

take the highway, the message will be “CONGESTION AHEAD, XX 

MINUTES TO NEXT EXIT”. 

 If there is no congestion ahead, the message will be “DRIVE WITH 

CARE”. 

The above rule is only for demonstration purpose, a detailed generation rule can 

be easily extended from current framework. Note the DMS message generation 

process is independent with feedback learning of compliance rate process, and 

solving these two sub-problems can be in any order or not necessarily sequential. 

Note if we display “CONGESTION AHEAD, XX MINUTES TO NEXT 

EXIT”, we’re not suggesting a detour to travelers. We just provide the 

information to let them choose whether to take next exit or not. However, 

“CONGESTION AHEAD, TAKE NEXT EXIT” message is suggesting 

travelers taking next exit. 

This tool that generates optimal DMS can be fed to ATMS for displaying and 

coordinating DMS. However, it also requires ATMS to set up proper messages 

for DMS on those alternative detour routes. Alternative routes at certain 

locations (or freeway exits) can be predetermined. When congestion is detected 

and detour from freeway is suggested due to incidents, the ATMS can automate 

the DMS texts on those predetermined alternative routes to guide travelers. This 

tool will work best under the coordination with ATMS, which should be further 

investigated. 

6.2.6 Traffic states prediction for future stages 

We predict the traffic conditions for the next hour, the prediction is based on the 

DMS message, current traffic conditions and compliance rate. Since we have 

already decided the DMS messages and also updated the compliance rate, 

predicted route choice probability ppre can be calculated from current route 

choice probability pest. Then by running the DNL model using the predicted 

route choice probability ppre, traffic evolution for next one hour can be 

calculated. 

6.3 Browser-based implementation 

In this section we present a browser-based implementation of the proposed real-

time traffic management model. On the back-end, a server keeps updating the 

real-time traffic conditions and predicting the future traffic conditions, and on 

the front-end users can visualize the DMS messages and the animation of 

predicted network flow evolution through a web browser.  

The web application can be visited using the following link: 

http://bruno.heinz.cmu.edu/traffic/congestion_online/ 

http://bruno.heinz.cmu.edu/traffic/congestion_online/
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username: penndot2     password: penndot2 

The web application is designed to achieve high efficiency and stability. On the 

back-end, Gunicorn(19.6.0), Django(3.4.0), PostgreSQL(9.5) are used to build 

up the server; on the front-end, Leaflet(0.7.7), Bootstrap(3.3.1) and Leaflet 

TimeDimension(1.0.3) are used to visualize and animate the prediction results. 

The work-flow of the system is described in Figure 20. 

 

Figure 20 Structure of implemented web application 

The user first requests the estimation results from our web application through 

the browser. Our web application sends predicted traffic data back to the 

browser. Since the simulation results contain massive data points, a cache 

technique is employed to speed up the animation. 

We split the map into rectangles of regions so the browser could load the data 

according to user's view resolution, which makes the loading faster and caches 

easier. Figure 21 is an example to show how we split the map. The animation 

data are also sent by stream, so users can watch the animation even when the 

future prediction data are not completely loaded. The network is also 

hierarchically divided into different zoom levels, such as corridors, major roads 

and minor roads. Roads from different zoom level will be displayed on the map 

when users zooming in/out. 
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Figure 21 Example of map splitting 

For the top-left rectangle, (39.96, 75.21) is the coordinate to locate the rectangle 

and 3 is the zoom level 

Users can view the animation and change the speed of the animation by 

adjusting fps, as shown in Figure 22. They can also change the threshold of the 

coloring by moving the knots on the slider, and press "Change Threshold" 

button. "Default" button is used to revert to the default coloring scheme. 

 
Figure 22 View the animation 
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Users can report capacity drop for any link on the web browser by clicking the 

link on the map. A popup will appear with the information about this link, as 

shown in Figure 23. A slider representing capacity drop lies on the bottom of 

the popup. When users report the capacity drop, updates will be shown in the 

text box on the left-side panel. When finish reporting, users can press submit 

button and the reported capacity drops will be taken into account for the next 

round of iteration. 

 
Figure 23 Report capacity drop 

Users can also view the information and suggested display of the DMS by 

simply clicking the DMS icon on the map. A popup containing the DMS 

information will appear, as presented in Figure 24. 
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Figure 24 View DMS information 

In the updated version of the web application, users can also choose to view the 

road density or road speed, as shown in Figure 25. The overall estimation error 

for real-time speed is represented by R-square between simulated traffic speed 

and observed traffic speed. It’s presented below the “CHANGE THRESHOLD” 

button. The estimation accuracy will be discussed on the evaluation section. 
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Figure 25 Simulated speed and estimation accuracy 

We also provide an API for users to retrieve the generated DMS message data. 

The data is formatted in JSON, and the website of API is: 

http://bruno.heinz.cmu.edu/traffic/get_real_time_VMS/ 

6.4 Evaluation 

In this section, we use field data to test the proposed real-time network flow 

model and demonstrate its effectiveness. The traffic speed data on Wednesday 

July 13 2016, from 7:00 AM to 8:00 AM, are acquired from the INRIX website. 

The speed data are provided to the traffic management center on a real-time 

basis. Since the time interval is set as 15 minutes, there are in total 4 updates of 

the messages on the DMS in one hour. And all the DMS on I-95 corridor are 

optimized. The location of those DMS are shown in Figure 26. 

 
Figure 26 Dynamic message signs along the I-95 corridor in Philadelphia 

In each iteration, the sever conducts the whole process described in section 3. 

Due to the limited time constraint (one iteration must be finished within one 

time interval 15 minutes), the estimation and optimization processes perform 5 

gradient descents and terminate. The estimation and prediction take 

approximately 3 minutes separately and prediction takes around 2 minutes. So 

the whole process takes around 8 minutes on a 8-cores, Intel(R) Xeon(R) CPU 

L5420@2.50GHz based, 16GB RAM server. 

6.4.1 Estimation/Prediction accuracy 

First we evaluate the accuracy of the traffic speed estimation and prediction of 

the proposed model. The model performed 4 iterations, in each iteration we use 

estimated route choice probability and predicted route choice probability to 

simulate the traffic conditions for next one hour. For example, at 7:15 we 

estimate the traffic conditions in [7:00, 7:15] and simulate traffic from 7:00 to 

http://bruno.heinz.cmu.edu/traffic/get_real_time_VMS/
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8:00, then compare the results with the observed traffic speeds. Similarly, at 

7:15 we predict the traffic conditions on [7:15, 7:30] and simulate traffic from 

7:15 to 8:15 and compare the results with observed traffic speeds on every link. 

The estimation accuracy is presented in Figure 27, x-axis represents estimated 

traffic speed on each link and y-axis represents observed traffic speed data 

retrieved from INRIX API. Errors between estimated speed and observed speed 

are measured by r2, its formulation is as follows: 

 

where tta is the observed traffic speed on link a and ttâ is the estimated traffic 

speed on link a, Aois the set of all observed links (more than 3,000 links 

matched from 13,104 TMC units). 

As can be seen, the first iteration achieves the maximum r2 during the 

simulation, which is 0.80. r2 decreases as the iterations progress, because that 

the DNL model overestimates the congestion level on the networks. 

Unrealistically low throughput of node models is the major cause of this 

problem. However, most of the estimated traffic speeds match the observed 

speeds, and r2s are acceptable for all four iterations. 

One way to mitigate the congestion overestimation problem in practice is to 

clear vehicles on networks regularly, this engineering practice is also used in the 

implementation of our web application. 
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Figure 27 Estimated vs. observed traffic speeds in 4 iterations 

The prediction accuracy is presented in Figure 28. X-axis, y-axis and error 

measurement are the same with Figure 10. r2 for prediction is smaller than that 

of estimation, this is because we test on the historical data, the DMS messages 

do not really control the traffic flows, while the prediction takes account of the 

DMS messages, therefore the r2 for prediction is smaller. 
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Figure 28 Predicted vs. observed traffic speeds in 4 iterations 

6.4.2 Control effectiveness 

To measure the impacts of DMS messages on the overall network performance, 

we inspect the total travel time on every link, the total travel time on link a is 

denoted as: 

 

where Tota is the total travel time on link a, xa is the traffic flow on link a and 

ta is the travel time on link a. The box plots for total travel time of all links on 4 

iterations are shown in Figure 29 separately. As can be seen, the boxes for 

different traffic conditions are on similar level, which indicates that the control 

of DMS on I-95 has small influence on the overall network performance. This is 

because the network we use is large so the controls on single corridor do not 

have significant impacts on the overall network. However, the intervened traffic 

still yields a lower total travel time. If we have more controls over the network 

flow, the effectiveness of the control would be anticipated to increase. 
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Figure 29 Box plot for total travel time of all links in 4 iterations 

Another observation is that the first iteration has little congestion since the 

network is empty before loading, while the remaining iterations maintain a 

stable congestion level. This indicates that the DNL model needs to be warmed 

up before actual use. However as we discuss above, in practice we have to clear 

the vehicles regularly to prevent "gridlocks". Studies on how to balance the 

warming ups and network clearance are a real need for practical use of the on-

line simulation models. 

6.4.3 Real-time message generation 

During the iterations, the instructions on DMS are also generated, though not 

applied to actually control the traffic. Table 1 presents the generated messages 

on 10 DMS randomly selected from all DMS on I-95 corridor. As can be seen, 

the messages of the DMS vary from interval to interval and location to location 

according to estimated traffic conditions. 

Some DMS such as DMS-06-082 are located away from Philadelphia 

Downtown area so there is no congestion ahead of this DMS, the message is 
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always "Drive with care". Some DMSs such as DMS-06-177 are located on the 

highways entering down town area, where the congestion is usually severe; 

therefore the messages are generally CA and TD. 

6.5 Conclusion 

In this section we develop a real-time regional dynamic network model that 

simulates millions of trips for large-scale networks. The network model utilizes 

the real-time speed measurements to update travel behavior and network flow 

prediction, forming a closed-loop feedback learning and control. The model can 

be applied directly to predict traffic impact of planned and unplanned incidents, 

and provide real-time decision making for traffic operations. In particular, this 

model takes real-time traffic speed feeds, incident reports and historical O-D 

demand as input and optimizes the messages sent to DMS to achieve the best 

network performance. A browser-based web application implementing the 

proposed real-time network model is also presented. Users can visualize the 

DMS messages and the animation of predicted network flow evolution through 

a web browser. 

Experiments are conducted on DMS along I-95 corridor in the Philadelphia 

Region. The experiments indicate the proposed framework is able to reduce the 

overall congestion by real-time updating DMS messages. However, the traffic 

routing on merely I-95 corridor exits has very limited influence on the overall 

network performance. Allowing more traffic control across the network, such as 

signal timing, ramp metering and arterial traffic routing, would achieve a better 

network performance. Our future research will be focusing on further improving 

the prediction accuracy and field tests for PennDOT traffic management centers. 

Table 11 Generated messages on selected DMSs in 4 iterations 
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7. Discussions 

In this section we present how our models can be tied with ATMS model and 

what are the limitations of the propose model. 

7.1 Extension with ATMS 

In the proposed method, we pre-determine the detour route before the real-time 

control. Our method evaluates the congestion level of detour route and optimal 

route on the real-time basis and provides suggestions to travelers through DMS. 

With ATMS, the detour route at certain locations can be determined on a real-

time basis. For example, when congestion is detected due to incidents on certain 

road, the ATMS can automate our model not to select that road, and generate 

texts to divert people on those alternative routes (e.g., Exit X, take street A). 

Also, since the control is based on DMS message, only aggregated control can 

be applied on I-95 corridor. Travelers to different destination receive the same 

control message, control on individuals is impossible. But if our model is tied 

with ATMS, the model can be tailored to provide different suggestion for 

travelers with different destinations.  

Besides, ATMS can also be an input to our proposed model. For example, 

weather information, accident information and major events have significant 

impact to the prediction accuracy. If ATMS can provide such information to our 

real-time control model, the control policy is expected to be more precise. 

7.2 Limitation of the proposed model 

One major limitation of the proposed model is due to the restricted performance 

of the estimation/optimization algorithms through entire road networks. 

Although state-of-art algorithm is employed in this project, the convergence of 

the estimation/optimization algorithm is still not guaranteed. The main reason 

for the limited performance on network results from the convoluted relationship 

between network variables. 

Another limitation is due to the computational complexity of the traffic 

simulation process. To achieve an accurate simulation result, more 

computational time is usually required for the model. Since our model runs on a 

real-time basis, the computational time is strictly constrained. In the future 

extension, multi-thread/process algorithm can be developed to enhance the 

simulation accuracy. 
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8. Summary 

This project developed a general regional network model to estimate/predict 

time-varying traffic evolution on all highways and major arterials in 

Philadelphia Metropolitan Region. A case study was conducted for Center City 

bridge closures: assess the dynamic traffic impact of Center City bridge closures 

on both freeways and major arterials in the Philadelphia Region; propose real-

time traffic detour plans as a way of using travel demand management (TDM) 

strategies to mitigate overall impact caused by closures. 

We first collect data we need for the project and summarize the data. Then we 

focus on establishing a dynamic network model for the Philadelphia 

Metropolitan Region. A dynamic transportation network model that provides 

estimated day-to-day origin-destination demand among all Traffic Analysis 

Zones (TAZs) is developed. We examine and carefully calibrate the route 

choices for all the travelers with different origins and destinations using 

observed traffic counts and speed data. The calibrated model is capable of 

estimating network-wide traffic impact caused by any incident based upon a 

generic regional network consisting of freeway and major arterials. 

We also developed a real-time DTA algorithm that take real-time incident 

reports and real-time speed measurements simultaneously to update the 

underlying flow propagation. In addition to predicting next-hour network flow, 

we intend to intervene the network flow by optimizing the messages fed to 

dynamic message signs (DMS). Real-time DTA is essentially solved with, in 

part, optimal traffic routing only at limited DMS locations. The real-time 

prediction and message optimum are solved with algorithms that are 

computationally efficient for large-scale network. 

This project contributes to the methodology foundation of a real-time traffic 

control system in three aspects. First, we develop real-time DTA algorithms that 

take real-time incident reports and real-time speed measurements 

simultaneously to update the underlying flow propagation. Second, in addition 

to predicting next-hour network flow, we intend to intervene the network flow 

by optimizing the messages fed to dynamic message signs (DMS). Real-time 

DTA is essentially solved with, in part, optimal traffic routing only at limited 

DMS locations. Third, the real-time prediction and message optimum are solved 

with algorithms that are computationally efficient for large-scale network. 

The proposed model is implemented as an internet web application, a website 

built to visualize the control strategies and animate the flow evolutions. All the 

user interactions with the real-time traffic management model are based on 

browser. 
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Appendix A. Travel time change in different scenarios for 

AM peak (minutes) 

Origin Destination 
Time 

Interval 

Baseli

ne 

I-95 south 

closure 

I-95 north 

closure 

I-95 both 

closure 

Trenton Monroe Township 5:00 - 6:00 36.1 36.1 36.1 36.1 

Trenton Monroe Township 6:00 - 7:00 36.1 36.1 36.1 36.1 

Trenton Monroe Township 7:00 - 8:00 36.1 36.1 36.1 36.1 

Trenton Monroe Township 8:00 - 9:00 36.1 36.5 36.1 36.1 

Trenton Monroe Township 
9:00 - 

10:00 
36.1 36.1 36.1 36.1 

Trenton 
University of 
Pennsylvania 

5:00 - 6:00 45.3 45.3 61.8 62.1 

Trenton 
University of 

Pennsylvania 
6:00 - 7:00 45.3 45.3 53.9 61.8 

Trenton 
University of 
Pennsylvania 

7:00 - 8:00 44.9 44.9 49.4 53.1 

Trenton 
University of 

Pennsylvania 
8:00 - 9:00 45.6 47.3 53.3 53.9 

Trenton 
University of 
Pennsylvania 

9:00 - 
10:00 

50.4 51.7 54.3 49.2 

Trenton Wilmington 5:00 - 6:00 74.1 74.1 92.4 92.8 

Trenton Wilmington 6:00 - 7:00 73.2 73.2 71.2 92.4 

Trenton Wilmington 7:00 - 8:00 72.1 72.1 72.1 71.2 

Trenton Wilmington 8:00 - 9:00 72.7 72.1 72.1 71.2 

Trenton Wilmington 
9:00 - 

10:00 
72.1 72.7 72.1 71.2 

Trenton Cherry Hill 5:00 - 6:00 32.0 32.0 32.0 32.0 

Trenton Cherry Hill 6:00 - 7:00 32.0 32.0 32.0 32.0 

Trenton Cherry Hill 7:00 - 8:00 32.0 32.0 32.0 32.0 

Trenton Cherry Hill 8:00 - 9:00 32.0 32.0 32.0 32.0 

Trenton Cherry Hill 
9:00 - 

10:00 
32.0 32.0 32.0 32.0 

Trenton King of Prussia 5:00 - 6:00 57.7 57.7 57.7 57.7 

Trenton King of Prussia 6:00 - 7:00 57.7 57.7 57.7 57.7 

Trenton King of Prussia 7:00 - 8:00 57.8 57.8 57.7 57.7 

Trenton King of Prussia 8:00 - 9:00 62.3 62.8 62.8 57.7 

Trenton King of Prussia 
9:00 - 

10:00 
62.8 57.7 57.8 57.2 

Trenton 
Philadelphia 
Downtown 

5:00 - 6:00 42.3 42.3 56.8 62.4 

Trenton 
Philadelphia 

Downtown 
6:00 - 7:00 42.3 42.3 51.3 56.8 

Trenton 
Philadelphia 
Downtown 

7:00 - 8:00 42.3 42.3 46.8 48.9 

Trenton 
Philadelphia 

Downtown 
8:00 - 9:00 42.3 43.1 51.5 51.3 

Trenton 
Philadelphia 
Downtown 

9:00 - 
10:00 

48.5 49.7 52.4 46.8 

Monroe Township Trenton 5:00 - 6:00 36.0 36.0 36.0 36.0 

Monroe Township Trenton 6:00 - 7:00 36.0 36.0 36.0 36.0 

Monroe Township Trenton 7:00 - 8:00 36.0 36.0 36.0 36.0 

Monroe Township Trenton 8:00 - 9:00 40.1 36.0 36.0 36.0 

Monroe Township Trenton 
9:00 - 
10:00 

36.0 36.0 36.0 36.0 

Monroe Township 
University of 

Pennsylvania 
5:00 - 6:00 21.5 21.5 21.5 21.5 
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Monroe Township 
University of 

Pennsylvania 
6:00 - 7:00 21.5 21.5 21.5 21.5 

Monroe Township 
University of 
Pennsylvania 

7:00 - 8:00 21.5 21.5 21.8 21.5 

Monroe Township 
University of 

Pennsylvania 
8:00 - 9:00 24.1 24.3 24.1 21.5 

Monroe Township 
University of 
Pennsylvania 

9:00 - 
10:00 

24.1 25.3 24.3 21.5 

Monroe Township Wilmington 5:00 - 6:00 40.8 40.8 40.8 40.8 

Monroe Township Wilmington 6:00 - 7:00 40.4 40.4 40.4 40.8 

Monroe Township Wilmington 7:00 - 8:00 40.6 40.6 40.6 40.4 

Monroe Township Wilmington 8:00 - 9:00 40.6 40.6 40.6 40.4 

Monroe Township Wilmington 
9:00 - 
10:00 

40.6 40.6 40.6 40.4 

Monroe Township Cherry Hill 5:00 - 6:00 10.5 10.5 10.5 10.5 

Monroe Township Cherry Hill 6:00 - 7:00 10.5 10.5 10.5 10.5 

Monroe Township Cherry Hill 7:00 - 8:00 10.5 10.5 10.5 10.5 

Monroe Township Cherry Hill 8:00 - 9:00 10.5 10.5 10.5 10.5 

Monroe Township Cherry Hill 
9:00 - 

10:00 
10.5 10.5 10.5 10.5 

Monroe Township King of Prussia 5:00 - 6:00 49.4 49.4 49.4 49.4 

Monroe Township King of Prussia 6:00 - 7:00 46.3 46.3 47.6 49.4 

Monroe Township King of Prussia 7:00 - 8:00 46.7 48.9 48.4 47.6 

Monroe Township King of Prussia 8:00 - 9:00 49.8 49.2 49.2 47.6 

Monroe Township King of Prussia 
9:00 - 

10:00 
50.2 51.0 49.2 46.1 

Monroe Township 
Philadelphia 
Downtown 

5:00 - 6:00 22.7 22.7 22.7 22.7 

Monroe Township 
Philadelphia 

Downtown 
6:00 - 7:00 21.4 21.4 21.4 22.7 

Monroe Township 
Philadelphia 
Downtown 

7:00 - 8:00 22.3 23.9 22.8 21.4 

Monroe Township 
Philadelphia 

Downtown 
8:00 - 9:00 24.0 23.5 24.2 21.4 

Monroe Township 
Philadelphia 
Downtown 

9:00 - 
10:00 

24.0 24.7 24.2 21.4 

University of 

Pennsylvania 
Trenton 5:00 - 6:00 38.1 42.1 38.1 42.1 

University of 

Pennsylvania 
Trenton 6:00 - 7:00 38.1 42.1 38.1 42.1 

University of 

Pennsylvania 
Trenton 7:00 - 8:00 39.6 43.7 38.1 42.1 

University of 

Pennsylvania 
Trenton 8:00 - 9:00 41.6 44.1 38.1 42.5 

University of 

Pennsylvania 
Trenton 

9:00 - 

10:00 
41.6 43.1 38.1 41.6 

University of 

Pennsylvania 
Monroe Township 5:00 - 6:00 17.5 17.5 17.5 17.5 

University of 

Pennsylvania 
Monroe Township 6:00 - 7:00 17.5 17.5 17.5 17.5 

University of 

Pennsylvania 
Monroe Township 7:00 - 8:00 17.5 17.5 17.5 17.5 

University of 

Pennsylvania 
Monroe Township 8:00 - 9:00 17.5 17.5 17.5 17.5 

University of 

Pennsylvania 
Monroe Township 

9:00 - 

10:00 
17.5 17.5 17.5 17.5 

University of 

Pennsylvania 
Wilmington 5:00 - 6:00 33.1 33.1 33.1 33.1 

University of 

Pennsylvania 
Wilmington 6:00 - 7:00 32.2 32.2 32.2 33.1 

University of 

Pennsylvania 
Wilmington 7:00 - 8:00 34.2 34.2 32.2 33.1 

University of 

Pennsylvania 
Wilmington 8:00 - 9:00 34.5 34.5 32.2 32.2 



57 

 

University of 

Pennsylvania 
Wilmington 

9:00 - 

10:00 
32.2 32.2 33.1 32.2 

University of 
Pennsylvania 

Cherry Hill 5:00 - 6:00 15.0 15.0 15.0 15.0 

University of 

Pennsylvania 
Cherry Hill 6:00 - 7:00 15.0 15.0 15.0 15.0 

University of 
Pennsylvania 

Cherry Hill 7:00 - 8:00 15.0 15.0 15.0 15.0 

University of 

Pennsylvania 
Cherry Hill 8:00 - 9:00 15.0 15.2 15.2 15.0 

University of 
Pennsylvania 

Cherry Hill 
9:00 - 
10:00 

15.0 15.2 15.2 15.0 

University of 

Pennsylvania 
King of Prussia 5:00 - 6:00 28.8 28.8 28.8 28.8 

University of 
Pennsylvania 

King of Prussia 6:00 - 7:00 25.9 25.9 25.9 28.8 

University of 

Pennsylvania 
King of Prussia 7:00 - 8:00 25.3 25.6 26.0 28.8 

University of 
Pennsylvania 

King of Prussia 8:00 - 9:00 25.3 25.3 25.3 26.0 

University of 

Pennsylvania 
King of Prussia 

9:00 - 

10:00 
25.9 25.9 25.9 25.3 

University of 
Pennsylvania 

Philadelphia 
Downtown 

5:00 - 6:00 3.8 3.8 3.8 3.8 

University of 

Pennsylvania 

Philadelphia 

Downtown 
6:00 - 7:00 3.8 3.8 3.8 3.8 

University of 

Pennsylvania 

Philadelphia 

Downtown 
7:00 - 8:00 3.8 3.8 3.8 3.8 

University of 

Pennsylvania 

Philadelphia 

Downtown 
8:00 - 9:00 3.8 3.8 3.8 3.8 

University of 

Pennsylvania 

Philadelphia 

Downtown 

9:00 - 

10:00 
3.8 3.8 3.8 3.8 

Wilmington Trenton 5:00 - 6:00 65.9 70.5 65.9 70.5 

Wilmington Trenton 6:00 - 7:00 65.9 70.5 65.9 70.5 

Wilmington Trenton 7:00 - 8:00 67.1 69.3 65.6 70.5 

Wilmington Trenton 8:00 - 9:00 69.3 69.3 65.7 70.9 

Wilmington Trenton 
9:00 - 
10:00 

65.9 69.3 65.6 69.3 

Wilmington Monroe Township 5:00 - 6:00 38.1 38.1 38.1 38.1 

Wilmington Monroe Township 6:00 - 7:00 39.8 39.8 39.8 38.1 

Wilmington Monroe Township 7:00 - 8:00 38.1 38.1 38.1 38.3 

Wilmington Monroe Township 8:00 - 9:00 39.8 38.1 38.1 39.8 

Wilmington Monroe Township 
9:00 - 
10:00 

39.8 40.1 38.1 38.1 

Wilmington 
University of 

Pennsylvania 
5:00 - 6:00 31.2 31.2 31.2 31.2 

Wilmington 
University of 
Pennsylvania 

6:00 - 7:00 31.2 31.2 31.2 31.2 

Wilmington 
University of 

Pennsylvania 
7:00 - 8:00 31.2 31.2 31.2 31.2 

Wilmington 
University of 
Pennsylvania 

8:00 - 9:00 31.2 31.2 31.2 31.2 

Wilmington 
University of 

Pennsylvania 

9:00 - 

10:00 
31.2 31.2 31.2 31.2 

Wilmington Cherry Hill 5:00 - 6:00 40.9 40.9 40.9 40.9 

Wilmington Cherry Hill 6:00 - 7:00 40.9 40.9 40.9 40.9 

Wilmington Cherry Hill 7:00 - 8:00 40.9 40.9 40.9 40.9 

Wilmington Cherry Hill 8:00 - 9:00 43.3 44.0 40.9 40.9 

Wilmington Cherry Hill 
9:00 - 

10:00 
40.9 40.9 43.0 40.9 

Wilmington King of Prussia 5:00 - 6:00 42.0 42.0 42.0 42.0 

Wilmington King of Prussia 6:00 - 7:00 39.2 39.2 39.2 42.0 

Wilmington King of Prussia 7:00 - 8:00 39.2 39.2 39.2 42.0 
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Wilmington King of Prussia 8:00 - 9:00 39.2 39.2 39.2 39.2 

Wilmington King of Prussia 
9:00 - 

10:00 
39.2 39.2 39.2 39.2 

Wilmington 
Philadelphia 
Downtown 

5:00 - 6:00 31.9 31.9 31.9 31.9 

Wilmington 
Philadelphia 

Downtown 
6:00 - 7:00 31.9 31.9 31.9 31.9 

Wilmington 
Philadelphia 
Downtown 

7:00 - 8:00 31.9 31.9 31.9 31.9 

Wilmington 
Philadelphia 

Downtown 
8:00 - 9:00 31.9 32.9 31.9 31.9 

Wilmington 
Philadelphia 
Downtown 

9:00 - 
10:00 

31.9 32.9 31.9 31.9 

Cherry Hill Trenton 5:00 - 6:00 31.9 31.9 31.9 31.9 

Cherry Hill Trenton 6:00 - 7:00 31.9 31.9 31.9 31.9 

Cherry Hill Trenton 7:00 - 8:00 32.0 31.9 31.9 31.9 

Cherry Hill Trenton 8:00 - 9:00 36.2 32.0 32.0 31.9 

Cherry Hill Trenton 
9:00 - 

10:00 
32.0 31.9 32.0 31.9 

Cherry Hill Monroe Township 5:00 - 6:00 10.6 10.6 10.6 10.6 

Cherry Hill Monroe Township 6:00 - 7:00 10.6 10.6 10.6 10.6 

Cherry Hill Monroe Township 7:00 - 8:00 11.4 10.6 10.6 10.6 

Cherry Hill Monroe Township 8:00 - 9:00 11.4 11.4 11.4 10.6 

Cherry Hill Monroe Township 
9:00 - 

10:00 
11.4 10.6 10.6 10.6 

Cherry Hill 
University of 
Pennsylvania 

5:00 - 6:00 21.7 21.7 21.7 21.7 

Cherry Hill 
University of 

Pennsylvania 
6:00 - 7:00 21.7 21.7 21.7 21.7 

Cherry Hill 
University of 
Pennsylvania 

7:00 - 8:00 20.4 21.8 19.8 21.7 

Cherry Hill 
University of 

Pennsylvania 
8:00 - 9:00 22.0 23.9 20.4 21.7 

Cherry Hill 
University of 
Pennsylvania 

9:00 - 
10:00 

26.4 20.6 20.4 19.8 

Cherry Hill Wilmington 5:00 - 6:00 51.1 51.1 51.1 51.1 

Cherry Hill Wilmington 6:00 - 7:00 50.2 50.2 50.2 51.1 

Cherry Hill Wilmington 7:00 - 8:00 47.4 46.9 46.7 51.1 

Cherry Hill Wilmington 8:00 - 9:00 48.7 49.0 48.5 50.2 

Cherry Hill Wilmington 
9:00 - 
10:00 

47.3 48.3 48.4 45.8 

Cherry Hill King of Prussia 5:00 - 6:00 45.4 45.4 45.4 45.4 

Cherry Hill King of Prussia 6:00 - 7:00 43.4 44.0 45.4 45.4 

Cherry Hill King of Prussia 7:00 - 8:00 42.8 44.3 42.9 45.4 

Cherry Hill King of Prussia 8:00 - 9:00 44.5 46.4 42.8 45.4 

Cherry Hill King of Prussia 
9:00 - 
10:00 

44.6 43.6 42.8 41.9 

Cherry Hill 
Philadelphia 

Downtown 
5:00 - 6:00 18.7 18.7 18.7 18.7 

Cherry Hill 
Philadelphia 
Downtown 

6:00 - 7:00 18.7 18.7 18.7 18.7 

Cherry Hill 
Philadelphia 

Downtown 
7:00 - 8:00 17.7 19.3 17.2 18.7 

Cherry Hill 
Philadelphia 
Downtown 

8:00 - 9:00 18.7 20.6 17.7 18.7 

Cherry Hill 
Philadelphia 

Downtown 

9:00 - 

10:00 
18.8 17.4 17.7 17.2 

King of Prussia Trenton 5:00 - 6:00 45.9 45.9 45.9 45.9 

King of Prussia Trenton 6:00 - 7:00 45.9 45.9 45.9 45.9 

King of Prussia Trenton 7:00 - 8:00 45.4 45.4 45.4 45.9 
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King of Prussia Trenton 8:00 - 9:00 45.4 45.4 45.4 45.9 

King of Prussia Trenton 
9:00 - 

10:00 
45.4 45.4 45.4 45.4 

King of Prussia Monroe Township 5:00 - 6:00 41.1 41.1 41.1 41.1 

King of Prussia Monroe Township 6:00 - 7:00 41.1 41.1 41.1 41.1 

King of Prussia Monroe Township 7:00 - 8:00 41.1 39.5 40.0 41.1 

King of Prussia Monroe Township 8:00 - 9:00 39.5 39.5 40.0 41.1 

King of Prussia Monroe Township 
9:00 - 

10:00 
40.0 40.0 40.0 39.5 

King of Prussia 
University of 

Pennsylvania 
5:00 - 6:00 24.9 24.9 24.9 24.9 

King of Prussia 
University of 

Pennsylvania 
6:00 - 7:00 24.9 24.9 24.9 24.9 

King of Prussia 
University of 

Pennsylvania 
7:00 - 8:00 24.9 25.7 24.9 24.9 

King of Prussia 
University of 

Pennsylvania 
8:00 - 9:00 24.5 24.5 24.9 24.9 

King of Prussia 
University of 

Pennsylvania 

9:00 - 

10:00 
24.9 24.9 24.9 24.5 

King of Prussia Wilmington 5:00 - 6:00 41.0 41.0 41.0 41.0 

King of Prussia Wilmington 6:00 - 7:00 40.5 40.5 40.5 41.0 

King of Prussia Wilmington 7:00 - 8:00 40.5 40.5 40.5 40.5 

King of Prussia Wilmington 8:00 - 9:00 41.0 40.5 43.3 40.5 

King of Prussia Wilmington 
9:00 - 

10:00 
40.5 41.0 40.5 40.5 

King of Prussia Cherry Hill 5:00 - 6:00 35.7 35.7 35.7 35.7 

King of Prussia Cherry Hill 6:00 - 7:00 35.7 35.7 35.7 35.7 

King of Prussia Cherry Hill 7:00 - 8:00 35.7 35.2 35.7 35.7 

King of Prussia Cherry Hill 8:00 - 9:00 35.2 35.4 35.9 35.7 

King of Prussia Cherry Hill 
9:00 - 

10:00 
35.7 35.9 35.9 35.2 

King of Prussia 
Philadelphia 
Downtown 

5:00 - 6:00 25.2 25.2 25.2 25.2 

King of Prussia 
Philadelphia 

Downtown 
6:00 - 7:00 25.2 25.2 25.2 25.2 

King of Prussia 
Philadelphia 
Downtown 

7:00 - 8:00 25.2 24.8 25.2 25.2 

King of Prussia 
Philadelphia 

Downtown 
8:00 - 9:00 25.3 24.8 25.2 25.2 

King of Prussia 
Philadelphia 
Downtown 

9:00 - 
10:00 

25.2 25.2 25.2 24.8 

Philadelphia 

downtown 
Trenton 5:00 - 6:00 35.6 40.0 35.6 40.0 

Philadelphia 
downtown 

Trenton 6:00 - 7:00 35.6 41.3 35.6 40.0 

Philadelphia 

downtown 
Trenton 7:00 - 8:00 37.1 41.3 35.6 40.0 

Philadelphia 
downtown 

Trenton 8:00 - 9:00 36.5 41.5 35.6 41.5 

Philadelphia 

downtown 
Trenton 

9:00 - 

10:00 
35.6 41.1 35.6 40.0 

Philadelphia 
downtown 

Monroe Township 5:00 - 6:00 17.1 17.1 17.1 17.1 

Philadelphia 

downtown 
Monroe Township 6:00 - 7:00 17.1 17.1 17.1 17.1 

Philadelphia 
downtown 

Monroe Township 7:00 - 8:00 17.1 17.1 17.1 17.1 

Philadelphia 

downtown 
Monroe Township 8:00 - 9:00 17.1 17.1 17.1 17.1 

Philadelphia 
downtown 

Monroe Township 
9:00 - 
10:00 

17.1 17.1 17.1 17.1 

Philadelphia 

downtown 

University of 

Pennsylvania 
5:00 - 6:00 4.3 4.3 4.3 4.3 

Philadelphia University of 6:00 - 7:00 4.3 4.3 4.3 4.3 
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downtown Pennsylvania 

Philadelphia 

downtown 

University of 

Pennsylvania 
7:00 - 8:00 4.3 4.3 4.3 4.3 

Philadelphia 
downtown 

University of 
Pennsylvania 

8:00 - 9:00 4.4 4.3 4.3 4.3 

Philadelphia 

downtown 

University of 

Pennsylvania 

9:00 - 

10:00 
4.3 4.3 4.3 4.3 

Philadelphia 
downtown 

Wilmington 5:00 - 6:00 34.3 34.3 34.3 34.3 

Philadelphia 

downtown 
Wilmington 6:00 - 7:00 33.4 33.4 33.4 34.3 

Philadelphia 
downtown 

Wilmington 7:00 - 8:00 35.4 35.4 33.4 34.3 

Philadelphia 

downtown 
Wilmington 8:00 - 9:00 35.7 35.7 33.4 33.4 

Philadelphia 
downtown 

Wilmington 
9:00 - 
10:00 

33.4 33.4 34.3 33.4 

Philadelphia 

downtown 
Cherry Hill 5:00 - 6:00 11.7 11.7 11.7 11.7 

Philadelphia 
downtown 

Cherry Hill 6:00 - 7:00 11.7 11.7 11.7 11.7 

Philadelphia 

downtown 
Cherry Hill 7:00 - 8:00 11.7 11.7 11.7 11.7 

Philadelphia 
downtown 

Cherry Hill 8:00 - 9:00 11.7 11.9 11.9 11.7 

Philadelphia 

downtown 
Cherry Hill 

9:00 - 

10:00 
11.7 12.3 11.9 11.7 

Philadelphia 
downtown 

King of Prussia 5:00 - 6:00 30.0 30.0 30.0 30.0 

Philadelphia 

downtown 
King of Prussia 6:00 - 7:00 27.7 28.5 30.1 30.0 

Philadelphia 
downtown 

King of Prussia 7:00 - 8:00 28.0 28.0 28.6 30.0 

Philadelphia 

downtown 
King of Prussia 8:00 - 9:00 28.0 28.0 28.0 29.8 

Philadelphia 
downtown 

King of Prussia 
9:00 - 
10:00 

28.0 28.5 28.0 27.6 
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Appendix B. Travel time change in different scenarios for 

PM peak (minutes) 

Origin Destination 
Time 

Interval 

Baseli

ne 

I-95 south 

closure 

I-95 north 

closure 

I-95 both 

closure 

Trenton Monroe Township 
15:00-
16:00 

36.7 36.7 36.7 36.7 

Trenton Monroe Township 
16:00-

17:00 
37.1 37.1 36.7 37.1 

Trenton Monroe Township 
17:00-
18:00 

36.7 36.7 37.1 37.1 

Trenton Monroe Township 
18:00-

19:00 
37.1 36.7 36.7 36.7 

Trenton Monroe Township 
19:00-
20:00 

36.7 36.7 36.7 36.7 

Trenton 
University of 

Pennsylvania 

15:00-

16:00 
54.1 54.1 58.6 58.6 

Trenton 
University of 
Pennsylvania 

16:00-
17:00 

53.7 53.7 65.0 55.3 

Trenton 
University of 

Pennsylvania 

17:00-

18:00 
53.3 64.8 54.9 64.1 

Trenton 
University of 
Pennsylvania 

18:00-
19:00 

60.0 60.6 51.5 55.9 

Trenton 
University of 

Pennsylvania 

19:00-

20:00 
63.4 60.3 58.8 51.4 

Trenton Wilmington 
15:00-

16:00 
80.4 80.4 73.2 73.2 

Trenton Wilmington 
16:00-

17:00 
80.4 80.4 72.7 73.6 

Trenton Wilmington 
17:00-

18:00 
77.5 77.5 72.8 72.8 

Trenton Wilmington 
18:00-

19:00 
77.5 77.5 75.2 77.5 

Trenton Wilmington 
19:00-

20:00 
77.5 77.5 75.2 72.7 

Trenton Cherry Hill 
15:00-

16:00 
31.0 31.0 31.0 31.0 

Trenton Cherry Hill 
16:00-

17:00 
31.0 31.0 31.0 31.0 

Trenton Cherry Hill 
17:00-

18:00 
31.0 31.0 31.0 31.0 

Trenton Cherry Hill 
18:00-

19:00 
31.0 31.0 31.0 31.0 

Trenton Cherry Hill 
19:00-

20:00 
31.0 31.0 31.0 31.0 

Trenton King of Prussia 
15:00-

16:00 
51.8 51.8 51.8 51.8 

Trenton King of Prussia 
16:00-

17:00 
51.8 51.6 51.8 51.6 

Trenton King of Prussia 
17:00-

18:00 
51.8 51.8 51.6 51.8 

Trenton King of Prussia 
18:00-
19:00 

51.8 51.8 49.5 51.8 

Trenton King of Prussia 
19:00-

20:00 
51.8 51.8 49.5 49.3 

Trenton 
Philadelphia 
Downtown 

15:00-
16:00 

50.4 50.4 52.8 52.8 

Trenton 
Philadelphia 

Downtown 

16:00-

17:00 
50.4 50.4 54.6 52.8 

Trenton 
Philadelphia 

Downtown 

17:00-

18:00 
50.9 63.0 53.0 64.5 

Trenton 
Philadelphia 

Downtown 

18:00-

19:00 
58.5 59.2 49.9 54.9 

Trenton 
Philadelphia 
Downtown 

19:00-
20:00 

58.0 50.9 57.2 49.8 

Monroe Township Trenton 
15:00-

16:00 
36.2 36.2 36.2 36.2 

Monroe Township Trenton 
16:00-
17:00 

36.2 36.2 36.2 36.2 

Monroe Township Trenton 17:00- 36.2 36.2 36.2 36.2 
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18:00 

Monroe Township Trenton 
18:00-

19:00 
36.2 36.2 36.2 36.2 

Monroe Township Trenton 
19:00-

20:00 
36.2 36.2 36.2 36.2 

Monroe Township 
University of 

Pennsylvania 

15:00-

16:00 
31.9 31.9 31.9 31.9 

Monroe Township 
University of 

Pennsylvania 

16:00-

17:00 
31.9 31.3 32.5 31.3 

Monroe Township 
University of 

Pennsylvania 

17:00-

18:00 
31.3 30.8 29.1 29.2 

Monroe Township 
University of 

Pennsylvania 

18:00-

19:00 
29.2 28.9 29.6 29.9 

Monroe Township 
University of 

Pennsylvania 

19:00-

20:00 
29.1 28.9 30.0 27.3 

Monroe Township Wilmington 
15:00-

16:00 
41.9 41.9 41.9 41.9 

Monroe Township Wilmington 
16:00-

17:00 
41.9 41.9 42.5 41.9 

Monroe Township Wilmington 
17:00-

18:00 
40.6 40.6 40.6 40.6 

Monroe Township Wilmington 
18:00-

19:00 
40.6 40.6 40.6 40.6 

Monroe Township Wilmington 
19:00-

20:00 
41.9 40.6 40.6 40.6 

Monroe Township Cherry Hill 
15:00-
16:00 

10.5 10.5 10.5 10.5 

Monroe Township Cherry Hill 
16:00-

17:00 
10.5 10.5 11.0 10.5 

Monroe Township Cherry Hill 
17:00-
18:00 

10.5 10.5 10.5 10.5 

Monroe Township Cherry Hill 
18:00-

19:00 
10.5 10.5 11.0 11.0 

Monroe Township Cherry Hill 
19:00-
20:00 

10.5 10.5 10.5 10.5 

Monroe Township King of Prussia 
15:00-

16:00 
53.7 63.7 64.1 64.1 

Monroe Township King of Prussia 
16:00-
17:00 

59.4 59.1 53.6 54.5 

Monroe Township King of Prussia 
17:00-

18:00 
50.4 54.2 52.1 50.7 

Monroe Township King of Prussia 
18:00-

19:00 
51.0 52.0 50.9 50.4 

Monroe Township King of Prussia 
19:00-

20:00 
50.6 50.1 51.5 48.4 

Monroe Township 
Philadelphia 
Downtown 

15:00-
16:00 

27.0 28.2 27.0 27.0 

Monroe Township 
Philadelphia 

Downtown 

16:00-

17:00 
27.0 27.0 27.6 27.0 

Monroe Township 
Philadelphia 
Downtown 

17:00-
18:00 

24.2 27.0 25.6 26.8 

Monroe Township 
Philadelphia 

Downtown 

18:00-

19:00 
25.7 25.1 25.6 27.7 

Monroe Township 
Philadelphia 
Downtown 

19:00-
20:00 

25.8 25.1 26.7 24.1 

University of 

Pennsylvania 
Trenton 

15:00-

16:00 
37.6 63.7 37.6 63.7 

University of 
Pennsylvania 

Trenton 
16:00-
17:00 

37.6 54.8 37.6 53.6 

University of 

Pennsylvania 
Trenton 

17:00-

18:00 
37.8 55.9 38.2 51.1 

University of 

Pennsylvania 
Trenton 

18:00-

19:00 
37.8 56.1 37.8 51.7 

University of 

Pennsylvania 
Trenton 

19:00-

20:00 
37.6 54.1 37.6 47.7 

University of 
Pennsylvania 

Monroe Township 
15:00-
16:00 

27.0 27.0 27.0 27.0 

University of 

Pennsylvania 
Monroe Township 

16:00-

17:00 
27.0 27.0 27.7 27.0 

University of 
Pennsylvania 

Monroe Township 
17:00-
18:00 

26.2 26.3 26.2 27.0 

University of Monroe Township 18:00- 25.5 26.8 26.2 26.1 
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Pennsylvania 19:00 

University of 

Pennsylvania 
Monroe Township 

19:00-

20:00 
25.3 25.3 26.1 25.3 

University of 

Pennsylvania 
Wilmington 

15:00-

16:00 
36.1 36.1 36.1 36.1 

University of 

Pennsylvania 
Wilmington 

16:00-

17:00 
36.1 36.1 36.1 36.1 

University of 

Pennsylvania 
Wilmington 

17:00-

18:00 
34.3 35.4 35.4 36.1 

University of 

Pennsylvania 
Wilmington 

18:00-

19:00 
34.4 34.3 35.4 35.3 

University of 

Pennsylvania 
Wilmington 

19:00-

20:00 
34.0 34.2 35.3 34.0 

University of 

Pennsylvania 
Cherry Hill 

15:00-

16:00 
23.6 23.6 23.6 23.6 

University of 

Pennsylvania 
Cherry Hill 

16:00-

17:00 
23.6 23.6 23.6 23.6 

University of 

Pennsylvania 
Cherry Hill 

17:00-

18:00 
23.8 24.1 24.2 23.8 

University of 

Pennsylvania 
Cherry Hill 

18:00-

19:00 
23.8 24.1 23.1 23.4 

University of 

Pennsylvania 
Cherry Hill 

19:00-

20:00 
23.6 23.7 22.7 22.2 

University of 

Pennsylvania 
King of Prussia 

15:00-

16:00 
27.5 27.5 27.5 27.5 

University of 
Pennsylvania 

King of Prussia 
16:00-
17:00 

27.5 27.8 27.8 27.5 

University of 

Pennsylvania 
King of Prussia 

17:00-

18:00 
27.5 27.8 27.9 25.1 

University of 
Pennsylvania 

King of Prussia 
18:00-
19:00 

25.1 25.1 27.7 28.0 

University of 

Pennsylvania 
King of Prussia 

19:00-

20:00 
25.1 25.3 25.1 25.1 

University of 
Pennsylvania 

Philadelphia 
Downtown 

15:00-
16:00 

3.8 3.8 3.8 3.8 

University of 

Pennsylvania 

Philadelphia 

Downtown 

16:00-

17:00 
3.8 3.8 3.8 3.8 

University of 
Pennsylvania 

Philadelphia 
Downtown 

17:00-
18:00 

4.1 4.1 4.1 4.1 

University of 

Pennsylvania 

Philadelphia 

Downtown 

18:00-

19:00 
4.1 3.8 4.1 4.1 

University of 

Pennsylvania 

Philadelphia 

Downtown 

19:00-

20:00 
3.8 3.8 3.8 3.8 

Wilmington Trenton 
15:00-

16:00 
72.0 107.3 72.0 115.9 

Wilmington Trenton 
16:00-
17:00 

72.0 86.7 72.0 86.7 

Wilmington Trenton 
17:00-

18:00 
89.9 89.9 89.9 86.7 

Wilmington Trenton 
18:00-
19:00 

86.7 86.7 70.3 72.2 

Wilmington Trenton 
19:00-

20:00 
86.7 86.7 72.2 72.2 

Wilmington Monroe Township 
15:00-
16:00 

40.6 40.6 40.6 40.6 

Wilmington Monroe Township 
16:00-

17:00 
40.6 40.8 40.6 40.6 

Wilmington Monroe Township 
17:00-
18:00 

42.1 42.0 40.6 40.6 

Wilmington Monroe Township 
18:00-

19:00 
40.6 40.7 40.6 40.6 

Wilmington Monroe Township 
19:00-

20:00 
40.6 40.6 40.6 40.6 

Wilmington 
University of 

Pennsylvania 

15:00-

16:00 
46.6 46.6 46.6 46.6 

Wilmington 
University of 
Pennsylvania 

16:00-
17:00 

46.6 45.9 46.6 45.9 

Wilmington 
University of 

Pennsylvania 

17:00-

18:00 
35.6 35.6 34.2 34.2 

Wilmington 
University of 
Pennsylvania 

18:00-
19:00 

34.2 34.2 34.1 34.2 

Wilmington University of 19:00- 34.2 34.2 34.2 34.1 
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Pennsylvania 20:00 

Wilmington Cherry Hill 
15:00-

16:00 
55.6 55.6 55.6 55.6 

Wilmington Cherry Hill 
16:00-

17:00 
53.3 48.9 48.8 48.8 

Wilmington Cherry Hill 
17:00-

18:00 
48.0 49.5 46.5 48.8 

Wilmington Cherry Hill 
18:00-

19:00 
46.5 46.5 47.0 47.0 

Wilmington Cherry Hill 
19:00-

20:00 
46.5 48.8 46.5 46.2 

Wilmington King of Prussia 
15:00-

16:00 
39.4 39.4 39.4 39.4 

Wilmington King of Prussia 
16:00-

17:00 
39.4 39.4 39.4 39.4 

Wilmington King of Prussia 
17:00-

18:00 
42.6 42.6 42.6 39.4 

Wilmington King of Prussia 
18:00-

19:00 
41.2 39.4 41.2 39.4 

Wilmington King of Prussia 
19:00-

20:00 
39.4 39.4 39.4 39.4 

Wilmington 
Philadelphia 

Downtown 

15:00-

16:00 
49.7 49.7 49.7 49.7 

Wilmington 
Philadelphia 

Downtown 

16:00-

17:00 
43.0 43.0 49.7 43.0 

Wilmington 
Philadelphia 
Downtown 

17:00-
18:00 

40.3 42.0 38.8 40.6 

Wilmington 
Philadelphia 

Downtown 

18:00-

19:00 
38.2 37.8 38.8 37.9 

Wilmington 
Philadelphia 
Downtown 

19:00-
20:00 

37.8 39.0 37.8 37.4 

Cherry Hill Trenton 
15:00-

16:00 
32.0 32.0 32.0 32.0 

Cherry Hill Trenton 
16:00-
17:00 

32.0 32.0 32.0 32.0 

Cherry Hill Trenton 
17:00-

18:00 
32.0 32.0 32.0 32.0 

Cherry Hill Trenton 
18:00-
19:00 

32.0 32.0 32.0 32.0 

Cherry Hill Trenton 
19:00-

20:00 
32.0 35.7 32.0 32.0 

Cherry Hill Monroe Township 
15:00-

16:00 
11.3 11.3 11.3 11.3 

Cherry Hill Monroe Township 
16:00-

17:00 
11.4 11.4 11.4 11.4 

Cherry Hill Monroe Township 
17:00-
18:00 

11.4 11.9 11.9 11.9 

Cherry Hill Monroe Township 
18:00-

19:00 
11.9 11.4 11.4 11.4 

Cherry Hill Monroe Township 
19:00-
20:00 

11.4 11.3 11.3 11.3 

Cherry Hill 
University of 

Pennsylvania 

15:00-

16:00 
30.9 30.9 30.9 30.9 

Cherry Hill 
University of 
Pennsylvania 

16:00-
17:00 

27.3 26.4 31.0 31.0 

Cherry Hill 
University of 

Pennsylvania 

17:00-

18:00 
29.9 29.5 29.7 27.1 

Cherry Hill 
University of 
Pennsylvania 

18:00-
19:00 

29.0 29.1 27.4 28.1 

Cherry Hill 
University of 

Pennsylvania 

19:00-

20:00 
29.3 26.3 26.5 24.9 

Cherry Hill Wilmington 
15:00-

16:00 
59.4 59.4 59.4 59.4 

Cherry Hill Wilmington 
16:00-

17:00 
50.6 48.0 47.9 47.9 

Cherry Hill Wilmington 
17:00-
18:00 

47.9 48.4 48.8 48.1 

Cherry Hill Wilmington 
18:00-

19:00 
47.9 48.5 47.7 47.7 

Cherry Hill Wilmington 
19:00-
20:00 

47.9 47.6 47.5 47.5 

Cherry Hill King of Prussia 15:00- 52.7 53.5 57.9 57.9 
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16:00 

Cherry Hill King of Prussia 
16:00-

17:00 
50.0 50.0 51.7 53.6 

Cherry Hill King of Prussia 
17:00-

18:00 
52.5 52.2 52.8 48.6 

Cherry Hill King of Prussia 
18:00-

19:00 
50.9 52.2 48.7 48.6 

Cherry Hill King of Prussia 
19:00-

20:00 
50.8 47.5 48.0 46.0 

Cherry Hill 
Philadelphia 

Downtown 

15:00-

16:00 
27.2 27.2 27.2 27.2 

Cherry Hill 
Philadelphia 

Downtown 

16:00-

17:00 
24.1 23.1 26.3 27.3 

Cherry Hill 
Philadelphia 

Downtown 

17:00-

18:00 
26.3 25.2 26.3 24.7 

Cherry Hill 
Philadelphia 

Downtown 

18:00-

19:00 
25.5 25.2 23.5 25.3 

Cherry Hill 
Philadelphia 

Downtown 

19:00-

20:00 
26.0 22.5 23.2 21.7 

King of Prussia Trenton 
15:00-

16:00 
62.5 62.5 62.5 62.5 

King of Prussia Trenton 
16:00-

17:00 
62.5 62.5 62.5 62.5 

King of Prussia Trenton 
17:00-

18:00 
62.5 62.5 62.5 62.5 

King of Prussia Trenton 
18:00-
19:00 

62.5 62.5 55.2 62.5 

King of Prussia Trenton 
19:00-

20:00 
62.4 62.4 55.1 55.1 

King of Prussia Monroe Township 
15:00-
16:00 

58.2 58.2 58.2 58.2 

King of Prussia Monroe Township 
16:00-

17:00 
58.2 58.2 58.2 58.2 

King of Prussia Monroe Township 
17:00-
18:00 

58.2 61.0 61.0 60.7 

King of Prussia Monroe Township 
18:00-

19:00 
57.4 50.8 57.4 54.4 

King of Prussia Monroe Township 
19:00-
20:00 

57.4 50.7 60.9 50.0 

King of Prussia 
University of 

Pennsylvania 

15:00-

16:00 
35.8 35.8 35.8 35.8 

King of Prussia 
University of 

Pennsylvania 

16:00-

17:00 
35.8 35.8 35.8 35.8 

King of Prussia 
University of 

Pennsylvania 

17:00-

18:00 
35.8 35.8 35.8 25.4 

King of Prussia 
University of 
Pennsylvania 

18:00-
19:00 

35.8 26.0 35.8 26.0 

King of Prussia 
University of 

Pennsylvania 

19:00-

20:00 
35.8 26.0 35.8 25.4 

King of Prussia Wilmington 
15:00-
16:00 

40.0 40.8 40.8 40.8 

King of Prussia Wilmington 
16:00-

17:00 
40.0 40.0 40.0 40.0 

King of Prussia Wilmington 
17:00-
18:00 

40.0 40.0 40.0 40.0 

King of Prussia Wilmington 
18:00-

19:00 
40.8 40.0 40.0 40.0 

King of Prussia Wilmington 
19:00-
20:00 

40.4 40.4 40.4 40.0 

King of Prussia Cherry Hill 
15:00-

16:00 
54.1 54.1 54.1 54.1 

King of Prussia Cherry Hill 
16:00-

17:00 
54.1 54.1 54.1 54.1 

King of Prussia Cherry Hill 
17:00-

18:00 
54.1 54.1 54.1 53.8 

King of Prussia Cherry Hill 
18:00-
19:00 

54.1 49.0 53.5 47.3 

King of Prussia Cherry Hill 
19:00-

20:00 
54.1 49.3 53.2 45.4 

King of Prussia 
Philadelphia 
Downtown 

15:00-
16:00 

36.1 36.1 36.1 36.1 

King of Prussia Philadelphia 16:00- 36.6 36.1 36.1 36.1 
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Downtown 17:00 

King of Prussia 
Philadelphia 

Downtown 

17:00-

18:00 
36.1 36.6 36.1 36.8 

King of Prussia 
Philadelphia 

Downtown 

18:00-

19:00 
36.1 29.5 36.1 30.4 

King of Prussia 
Philadelphia 

Downtown 

19:00-

20:00 
36.1 29.5 36.1 28.6 

Philadelphia 

downtown 
Trenton 

15:00-

16:00 
34.3 58.6 34.3 58.6 

Philadelphia 

downtown 
Trenton 

16:00-

17:00 
35.4 52.2 35.0 50.2 

Philadelphia 

downtown 
Trenton 

17:00-

18:00 
34.3 53.7 35.0 49.3 

Philadelphia 

downtown 
Trenton 

18:00-

19:00 
34.3 53.6 34.3 49.5 

Philadelphia 

downtown 
Trenton 

19:00-

20:00 
34.3 51.1 34.3 45.0 

Philadelphia 

downtown 
Monroe Township 

15:00-

16:00 
26.8 26.8 26.8 24.4 

Philadelphia 

downtown 
Monroe Township 

16:00-

17:00 
26.8 25.2 26.8 25.2 

Philadelphia 

downtown 
Monroe Township 

17:00-

18:00 
21.9 24.6 21.9 21.9 

Philadelphia 

downtown 
Monroe Township 

18:00-

19:00 
22.1 22.1 21.9 22.1 

Philadelphia 
downtown 

Monroe Township 
19:00-
20:00 

21.9 21.9 21.9 21.9 

Philadelphia 

downtown 

University of 

Pennsylvania 

15:00-

16:00 
4.3 4.3 4.3 4.3 

Philadelphia 
downtown 

University of 
Pennsylvania 

16:00-
17:00 

4.4 4.3 4.3 4.3 

Philadelphia 

downtown 

University of 

Pennsylvania 

17:00-

18:00 
4.4 4.4 4.4 4.3 

Philadelphia 
downtown 

University of 
Pennsylvania 

18:00-
19:00 

4.4 4.4 4.4 4.4 

Philadelphia 

downtown 

University of 

Pennsylvania 

19:00-

20:00 
4.3 4.4 4.3 4.3 

Philadelphia 
downtown 

Wilmington 
15:00-
16:00 

36.6 36.6 36.6 36.6 

Philadelphia 

downtown 
Wilmington 

16:00-

17:00 
36.6 36.6 36.6 36.6 

Philadelphia 

downtown 
Wilmington 

17:00-

18:00 
32.7 33.5 32.7 36.6 

Philadelphia 

downtown 
Wilmington 

18:00-

19:00 
32.7 32.7 32.7 32.8 

Philadelphia 
downtown 

Wilmington 
19:00-
20:00 

32.7 32.7 32.7 32.7 

Philadelphia 

downtown 
Cherry Hill 

15:00-

16:00 
22.7 22.7 22.7 20.3 

Philadelphia 
downtown 

Cherry Hill 
16:00-
17:00 

22.7 21.2 22.7 21.2 

Philadelphia 

downtown 
Cherry Hill 

17:00-

18:00 
20.9 20.5 20.6 20.3 

Philadelphia 
downtown 

Cherry Hill 
18:00-
19:00 

22.7 21.5 22.0 20.1 

Philadelphia 

downtown 
Cherry Hill 

19:00-

20:00 
20.3 22.6 21.8 19.0 

Philadelphia 
downtown 

King of Prussia 
15:00-
16:00 

27.4 28.3 27.4 33.7 

Philadelphia 

downtown 
King of Prussia 

16:00-

17:00 
28.2 28.2 26.4 28.2 

Philadelphia 

downtown 
King of Prussia 

17:00-

18:00 
28.3 28.3 28.7 27.0 

Philadelphia 

downtown 
King of Prussia 

18:00-

19:00 
27.4 29.5 26.9 26.4 

Philadelphia 
downtown 

King of Prussia 
19:00-
20:00 

27.1 27.6 27.1 26.4 
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Appendix C. User manual of the web application 

In this section, we present users how to use the web application, report incidents 

and view DMS messages. As shown in Figure 30, the interface of our web 

application consists of three components: animation control bar, left control 

panel and map. Map component display the current traffic conditions on 

networks. The left control panel contains the estimation accuracy of current 

interval and information about link capacity updates. Left panel can also be 

used to change the color threshold of the map visualization. The animation 

control panel allows users to visualize the dynamic network flow evolution in 

next one hour.  

 
Figure 30 Overview of the web interface 

C.1 Basic operation 

Basic operations on the web interface include zoom in/out the map, adjust the 

legend threshold. Zoom in/out functions are used to help users to visualize the 

road networks in different detail level. By adjusting the legend threshold, users 

can customize the color of the map display. 

C.2 Animation 

The animation control bar located at the bottom of web interface is used to 

control the animation of traffic flow prediction. Users can view the animation 

and change the speed of the animation by adjusting fps. They can also pause the 
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animation, jump forward/backward at any time during the animation. Users can 

also directly change the animation time by clicking at any position of the time 

bar. 

C.3 Incident report 

Users can view the road segment information by clicking that link on the map. 

A popup will appear with the information about this link, as shown in Figure 31. 

Some basic information about that link will be displayed on the popup, such as 

free flow speed, number of lanes and road length. 

A slider representing capacity drop also lies on the bottom of the popup. When 

users report the capacity drop, updates will be shown in the text box on the left-

side panel. When finish reporting, users can press submit button and the 

reported capacity drops will be taken into account for the next round of iteration.  

 
Figure 31 Link property and incident report 

After users finish the link capacity drop report, the updated information will be 

displayed on the top of left panel, as shown in Figure 32. 
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Figure 32 Example of link parameter updates 

C.4 Density/Speed switch 

Users can also switch to view the predicted traffic conditions based on road 

averaged speeds by clicking the “speed” icon on the top-right of the web 

interface. The color of the roads on map will be displayed based on its average 

speed, as shown in Figure 33. Also the legend threshold bar can be used to 

customize the speed/color mapping. 
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Figure 33 Road speed of predicted traffic 

C.5 DMS message 

DMS is displayed as a message board icon on the map. Users can also view the 

information by simply clicking the DMS icon on the map. A popup will appear 

contain the information of DMS including its name, direction and brief 

description. The suggested DMS messages are also displayed on the popup, as 

showed in Figure 34. 

We also provide an API for users to retrieve the generated DMS message data. 

The data is formatted in JSON, and the website of API is: 

http://bruno.heinz.cmu.edu/traffic/get_real_time_VMS/ 

 

http://bruno.heinz.cmu.edu/traffic/get_real_time_VMS/
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Figure 34 Example of DMS popup 

 


