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Background

What causes traffic congestions?

« Supply:
* Network capacity --- more roads
» Road capacity --- broader roads, forbid on-street parking

« Speed density relationship --- autonomous vehicle

 Demand:
« Heavy demand --- public transit, ride sharing
* Imbalanced demand --- connected vehicle, information center
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Background

A fundamental problem for all the traffic management models:
» How to get:

* Network Conditions

 Traffic Demand

 Travelers’ Behavior
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Background

SUPPLY SIDE
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Background

What are the demand and supply for a road network?

DEMAND SIDE

 Origin — Destination demand (O-D) demand
» Previously estimated by the density of residence, not accurate and not flexible

* \We want to estimate the O-D demand from various traffic data.
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Traffic flow
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Background
OBJECTIVE

Infer the network conditions, travelers’ behavior and traffic
demand from partially observed traffic data.

Input: partially observed traffic data
Output: whole network condition, underlying behavior
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Background

Look the problem as a regression model
Y=1(q,s)+e

(speed, flow) = Travelers’ behavior(O-D demand, network supply) + error

ﬁ ﬁ ﬁ ] ﬁ

Partially

Unknown Unknown Determmlstlc Unbiased
Observed
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Statistical Traffic Assignment

(speed, flow) = Travelers’ behavior(O-D demand, network supply) + error

500

400

350+ 4501

w

o

o
T

N
w
o
Traffic Flow in 5 Mins

Traffic Flow in 5 Mins

%
200p7% 300}

i i i 50 . " L
07:00 07:30 08:00 08:30 08:55 07:00 07:30 08:00 08:30 08:55
Time of Day

Daily time-varying traffic counts on SR41 SB and NB

O Statistical traffic assignment explores the statistical features of recurrent

flow patterns
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Statistical Traffic Assignment

1 O-D demand variation, route choice variation, unknown error
[ Variance and covariance in O-D demand
J Random selection of the route

O Unknown error caused by measurement
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Statistical Traffic Assignment

How to generate traffic?
* Travelers’ Information Structure: Know the distribution of path costs

« Travelers’ Route Choice: Probability based

N

Number of é Route to é Road Network
travelers choose Conditions

Multivariate

Multinomial
Normal Distribution
Distribution
Carnegie Mellon University http://www.nationalpower.info/winning-probability/
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Statistical Traffic Assignment

d OD
 MVN:Q~N(q,Z;)
« Scalable, stable and consistent
O Route choice
* p Is deterministic for a recurrent traffic network
» A generalized probability function: p = Y/(C; 0)
4 Path flow
« Path flow follows multinomial distribution
* FTSlQT‘SNMN(QTSJ prs)
« Normal approximation
O Link flow
« X = AF, where A is the path/link incidence matrix
O Path cost
» A generalized path cost function: C~t(X; ©)
« Normal approximation
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Model: Hierarchy

Level 1:
Xp~NX +¢e,32%, +Z,)
Level 2:
XNN(APQ; Zx)
Level 3;
Q~N(q, z:q)

O Level i is conditional on level i+1

O Each level reflects one single source
of the link flow variation

Carnegie Mellon University

Unknown error

Route choice variation

OD variation
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Model: Property

1 Existence and consistence of the solution
« Fixed point problem

* Ifthe path cost function Is continuous, the solution (x, Zy, f, Z¢, p)
exists.

* Once the solution (x, Xy, f, Zf, p) is determined, then it’s consistent.
 Reducible
« Model can be reduced to existing statistical assignment models

O Data driven
« Friendly to model learning techniques for large scale networks
« Dimension reduction, sparse regularization, model selection
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Model: Application

O Marginal distribution

Marginal distribution of X,,, can be written as:

Xm~N (X, ApZgp" AT +AZf AT 42, )

Three matrices represent the variance from OD, route choice and
measurement error separately.

L Variance ratio

« To measure the portion of each source of variance
» To help to reduce the system variance
» Trace norm, nuclear norm
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Experiment

[ Settings
Link 1
Link 3
Link 24@
Link 4
« OD:1->3,q=1000,0%= 10000
* Route choice model: Probit + Multinomial

* Link cost function: BPR function
« Measurement error: e = 0, 62 = 100
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Link 1

Experiment

Link 3
4 Basic results Link 2
Link 4
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Large Scale Network

O Settings
« SR41 freeway network: 2413 links and 7110 OD pairs
« OD demands were carefully calibrated
« Assume the O-D demand variance is 20% of its mean
O Results

 Terminated in 9 iterations and 467 seconds
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» Using Rectangle CI approximation.

* Red represents volume/capacity>1, and green represents volume/capacity=0, other colors are smoothly
transitioned from green to red as volume/capacity increases from 0 to 1)
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Background

Look the problem as a regression model
Y=1(q,s)+e

(speed, flow) = Travelers’ behavior(O-D demand, network supply) + error

ﬁ ﬁ ﬁ ] ﬁ

Partially

Defined Unknown Determmlstlc Unbiased
Observed

Carnegie Mellon University

Civil and Environmental Engineering



Probabilistic O-D Estimation

1 Objective: estimate the mean and
variance/covariance matrix of O-D demand from
day-to-day traffic data

O Data: partial observations X,,, 10% of the total road

segments, speed on major roads
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Probabilistic O-D Estimation

Why this is difficult?
 Hierarchical statistical model
» For Pittsburgh area: number of traffic flow data: ~2300
number of traffic speed data: ~1000
number of O-D pair: ~86000
» Under-determined problem, multiple solutions for O-D demand
* Number of parameters in variance/covariance matrix for O-D
demand: 86000 * 43000 !
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Probabilistic O-D Estimation

Equilibrium:
« Rational travelers in recurrent traffic conditions
« Iflink 1 and link 2 are exactly the same, then the traffic flow on
both links should be the same

* Multiple player equilibrium: Nash Equilibrium
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Probabilistic O-D Estimation

General Framework:
 lterative estimation framework (IGLS).
« EM algorithm in ML
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Probabilistic O-D Estimation

Estimate OD mean:

GLS, equilibrium constraint, single level relaxation
)+ (¢ = MF'SE T (g = M)

-

111}11 n (Aof — ;_'I?O)T yo-t (Aof — 20

st. f e &7

Estimate OD variance:

MLE, convex relaxation, LASSO model selection.

min [S7 — 2[5 + A5l
q

st Xp = A% A% 4+ A%E pTA
¥, € semidefinite(RI%a>I1Kal)
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Probabilistic O-D Estimation

Model Observability:
*  Non-unique solution

No worse than deterministic O-D estimation

Goodness of fit:
* Distribution based

«  Hellinger distance or Kullback-Leibler distance

r T DARDAE 1 1l 1)
Dy ((p1,21)" 5 (p2,32)" ) = 1— Texp | —c(e—m)" (581 + 522 (2 —m)
|lEl_lEQ‘2 8 2 2
) 3
(27)
T T L X9 —1 Ty—1
Drr((p, 21)7, (42, 22)") = 5 (log——d+ur (32'81) + (2 — p1)" B3 (w2 — 1) (28)
2 1
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Probabilistic O-D Estimation Link 1

Link 1 and Link 3 Observed, . .
500 samples Link 2—>®—L|nk 3

True p Method (12 (32  O1-2 039 7 RMPSE KL-distance
True 700 500 13.23 11.18 NA NA NA
w/o EC-w/oLasso 611.02 583.01 14.18 11.46 0.37  14.64% 106.80
0.5 Logit - w/o Lasso ~ 728.55 58885 12.81 11.07 0.55 11.00% 33.78

Probit - w/o Lasso  618.63 590.17 15.34 11.36 045  14.31% 101.69

w/o EC - w/o Lasso 765,43 588.78 11.95 10.25 0.03  12.90% 43.08

Logit - w/o Lasso  727.94 588.05 13.05 11.00 0.05  10.89% 33.24
0 Probit - w/o Lasso  618.58 587.79 13.79 11.16 0.07  14.02% 49.07
Logit - w/ Lasso 72827 58848 12.87 11.53  0.00  10.95% 33.60

Probit - w/ Lasso ~ 621.39 588.56 13.71 11.67 0.00  13.94% 49.04

w/o EC - w/o Lasso  780.12 586.04 7.80 11.18 —0.58 13.85% 95.26
—0.5 | Logit-w/o Lasso  726.41 586.08 1299 11.12 —0.58 10.61% 52.44
Probit - w/o Lasso  621.40 588.66 13.29 10.68 —0.37 13.79% 32.90

w/o EC: without equilibrium constraint; Logit/Probit: using Logit/Probit based SUE constraint;
w/o Lasso: without Lasso regularization; w/ Lasso: using Lasso regularization
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Probabilistic O-D Estimation
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« Logit - w/ Lasso - w/ History O-D method on a desktop computer
(Inter(R) Core 529 15-4460 3.20 GHz 2, RAM 8 GB)
«  Average computation time for each IGLS iteration is 233.05s.

« Converge in 20 iterations.
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Big Map

Model reliability

Model
complexity

Deterministic Stochastic

Dynamic Dynamic

Deterministic Stochastic
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Moving to Dynamic Network

« Static O-D demand --- Dynamic O-D demand
* Travelers’ behavior --- Dynamic network loading

» Static traffic condition --- Network flow evolution

Time varying speed, flow = DNL(dynamic O-D demand, network supply)
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Dynamic Network Loading

MAC-POSTS:

« Mobility Data Analytics Center - Prediction, optimization, and

simulation toolkit for transportation systems

* https://github.com/Lemmal/MAC-POSTS

Dynamic O-D |:>
demand

Carnegie Mellon University
Civil and Environmental Engineering
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https://github.com/Lemma1/MAC-POSTS
https://github.com/Lemma1/MAC-POSTS
https://github.com/Lemma1/MAC-POSTS
https://github.com/Lemma1/MAC-POSTS
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Dynamic network loading

PLAY

2:00 PM — 3:00 PM
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Real-time traffic management

Objective:
 real-time control of dynamic message sign on 1-95 corridor to reduce
network congestion

Data Input:

« Estimated dynamic O-D demand, calibrated behavior parameters
» Real-time traffic speed feeds

» Real-time accident report

Prediction Method:
« Dynamic network loading

Carnegie Mellon University
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Real-time traffic management

© Grayscale
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Rolling Horizon Framework

Current Interval

v

=5
=
o

6.

7.

>

Acquire Speed: acquire the real-time traffic speed in [8:00, 8:15]
Estimate Previous: estimate the route choice probability in [8:00,
8:15]

Compliance ratio update: update the DMS compliance ratio
calculated in [7:45, 8:00]

Optimize Next interval: optimize the route choice probability in
[8:15, 8:30]

Generate DMS Message: based on the optimized and estimated
route choice, generate DMS message for [8:15, 8:30]

Predict Future: Predict traffic state in next one hour using
updated compliance ratio

Move current time to 8:30, go back to step 1

Carnegie Mellon University
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INRIX API

Acquire real time
speed data

Historical OD

Estimated by off-line
DTA

e

Capacity Drop report

User can report capacity

[ N
Path generator

Generates path for real-
time vehicle routing

e a
State Estimator

Estimates travelers route
choice in current interval

s A
State Optimizer

Optimizes travelers route
choice in next interval

\
DMS message generator

Generate the DMS messages
according to the estimated and
\_ _ optimized route choice )

' N\
Feedback learner

Update DMS compliance rate

\ drop on browser

by feedback learning
/ \k j/

Data input

Server

/

N

u

Animation

Traffic condition
prediction of next one
hour

>~

DMS message

Updated DMS
message online and an
API is also provided

\

/

Browser

Overview of real-time traffic management framework
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Thanks!

Contact Info:
Carnegie Mellon University
Mobility Data Analytics Center
Wei Ma: weima@cmu.edu
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