Travelers' Behavior Modeling, Demand Estimation and Traffic Management: a Data Perspective

Wei Ma
Mobility Data Analytics Canter (MAC)
Carnegie Mellon University
Outline

- Background
- Behavior modeling: Statistical Traffic Assignment
- Demand estimation: Probabilistic O-D Estimation
- Dynamic Network Loading
- Real-time Traffic Management
Background

<table>
<thead>
<tr>
<th>Ranking</th>
<th>City</th>
<th>Hours spent in congestion</th>
<th>Total Cost per Driver</th>
<th>Total Cost per City</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104</td>
<td>$2,408.00</td>
<td>9.7B</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>New York</td>
<td>89</td>
<td>$2,533.00</td>
<td>16.9B</td>
</tr>
<tr>
<td>3</td>
<td>San Francisco</td>
<td>71</td>
<td>$1,861.00</td>
<td>3.1B</td>
</tr>
</tbody>
</table>

All data and insights provided by INRIX

http://inrix.com/resources/inrix-2016-traffic-scorecard-us/
Background

<table>
<thead>
<tr>
<th>Ranking</th>
<th>City</th>
<th>Hours spent in congestion</th>
<th>Total Cost per Driver</th>
<th>Total Cost per City</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Angeles</td>
<td>104</td>
<td>$ 2,408.00</td>
<td>9.7B</td>
</tr>
<tr>
<td>2</td>
<td>New York</td>
<td>89</td>
<td>$ 2,533.00</td>
<td>16.9B</td>
</tr>
<tr>
<td>3</td>
<td>San Francisco</td>
<td>71</td>
<td>$ 1,861.00</td>
<td>3.1B</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage of all driving time spent in congestion per driver: 9%

Hours spent in congestion by the average U.S. commuter: 42 hours

Total cost of congestion to all drivers in the U.S.: 300B

Cost of congestion to the average U.S. driver: $1,400

All data and insights provided by INRIX

Carnegie Mellon University
Civil and Environmental Engineering

http://inrix.com/resources/inrix-2016-traffic-scorecard-us/
Background

9%

Percentage of all driving time spent in congestion per driver

42

Hours spent in congestion by the average U.S. commuter

300B

Total cost of congestion to all drivers in the U.S.

$1,400

Cost of congestion to the average U.S. driver

<table>
<thead>
<tr>
<th>Ranking</th>
<th>City</th>
<th>Hours spent in congestion</th>
<th>Total Cost per Driver</th>
<th>Total Cost per City</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Angeles</td>
<td>104</td>
<td>$ 2,408.00</td>
<td>9.7B</td>
</tr>
<tr>
<td>2</td>
<td>New York</td>
<td>89</td>
<td>$ 2,533.00</td>
<td>16.9B</td>
</tr>
<tr>
<td>3</td>
<td>San Francisco</td>
<td>71</td>
<td>$ 1,861.00</td>
<td>3.1B</td>
</tr>
<tr>
<td>25</td>
<td>Pittsburgh</td>
<td>33</td>
<td>$ 1,062.00</td>
<td>944M</td>
</tr>
</tbody>
</table>

All data and insights provided by INRIX

Carnegie Mellon University

Civil and Environmental Engineering

http://inrix.com/resources/inrix-2016-traffic-scorecard-us/
Background

What causes traffic congestions?

- Supply:
 - Network capacity --- more roads
 - Road capacity --- broader roads, forbid on-street parking
 - Speed density relationship --- autonomous vehicle

- Demand:
 - Heavy demand --- public transit, ride sharing
 - Imbalanced demand --- connected vehicle, information center
Background

A fundamental problem for all the traffic management models:

- How to get:
 - Network Conditions
 - Traffic Demand
 - Travelers’ Behavior
Background
Background

SUPPLY SIDE

Carnegie Mellon University
Civil and Environmental Engineering
Background

What are the demand and supply for a road network?

DEMAND SIDE

• Origin – Destination demand (O-D) demand

• Previously estimated by the density of residence, not accurate and not flexible

• We want to estimate the O-D demand from various traffic data.
86499 O-D pairs
Traffic flow
Traffic speed
Background

OBJECTIVE

Infer the network conditions, travelers’ behavior and traffic demand from partially observed traffic data.

Input: partially observed traffic data
Output: whole network condition, underlying behavior
Background

Look the problem as a regression model

\[Y = f(q, s) + e \]

(speed, flow) = Travelers’ behavior(O-D demand, network supply) + error
Statistical Traffic Assignment

\[(\text{speed, flow}) = \text{Travelers’ behavior (O-D demand, network supply)} + \text{error}\]

Daily time-varying traffic counts on SR41 SB and NB

- Statistical traffic assignment explores the statistical features of recurrent flow patterns

\[f: Q \leftrightarrow X, F\]
Statistical Traffic Assignment

- O-D demand variation, route choice variation, unknown error
- Variance and covariance in O-D demand
- Random selection of the route
- Unknown error caused by measurement
Statistical Traffic Assignment

How to generate traffic?

- Travelers’ Information Structure: Know the distribution of path costs
- Travelers’ Route Choice: Probability based

Number of travelers → Route to choose → Road Network Conditions

Multivariate Normal Distribution → Multinomial Distribution

http://www.nationalpower.info/winning-probability/
Statistical Traffic Assignment

- **OD**
 - MVN: \(Q \sim N(q, \Sigma_q) \)
 - Scalable, stable and consistent

- **Route choice**
 - \(p \) is deterministic for a recurrent traffic network
 - A generalized probability function: \(p = \psi(C; \Theta) \)

- **Path flow**
 - Path flow follows multinomial distribution
 - \(F_{rs} | Q_{rs} \sim MN(Q_{rs}, p_{rs}) \)
 - Normal approximation

- **Link flow**
 - \(X = \Delta F \), where \(\Delta \) is the path/link incidence matrix

- **Path cost**
 - A generalized path cost function: \(C \sim t(X; \Theta) \)
 - Normal approximation
Model: Hierarchy

Level 1:
\[X_m \sim N(X + e, \Sigma_x + \Sigma_e) \]
Unknown error

Level 2:
\[X \sim N(\Delta p Q, \Sigma_x) \]
Route choice variation
\[F \sim N(p Q, \Sigma_f) \]

Level 3:
\[Q \sim N(q, \Sigma_q) \]
OD variation

- Level i is conditional on level i+1
- Each level reflects one single source of the link flow variation
Model: Property

- Existence and consistence of the solution
 - Fixed point problem
 - If the path cost function is continuous, the solution \((x, \Sigma_x, f, \Sigma_f, p)\) exists.
 - Once the solution \((x, \Sigma_x, f, \Sigma_f, p)\) is determined, then it’s consistent.

- Reducible
 - Model can be reduced to existing statistical assignment models

- Data driven
 - Friendly to model learning techniques for large scale networks
 - Dimension reduction, sparse regularization, model selection
Model: Application

- Marginal distribution

 Marginal distribution of X_m can be written as:
 \[
 X_m \sim N(x_m, \Delta p \Sigma q p^T \Delta^T + \Delta \Sigma_{f|q} \Delta^T + \Sigma_e)
 \]

 Three matrices represent the variance from OD, route choice and measurement error separately.

- Variance ratio

 - To measure the portion of each source of variance
 - To help to reduce the system variance
 - Trace norm, nuclear norm
Experiment

- **Settings**

- OD: 1 -> 3, $q = 1000$, $\sigma^2 = 10000$
- Route choice model: Probit + Multinomial
- Link cost function: BPR function
- Measurement error: $e = 0$, $\sigma_e^2 = 100$
Experiment

- Basic results

Network condition

Confidence interval
Large Scale Network

- Settings
 - SR41 freeway network: 2413 links and 7110 OD pairs
 - OD demands were carefully calibrated
 - Assume the O-D demand variance is 20% of its mean

- Results
 - Terminated in 9 iterations and 467 seconds
• Using Rectangle CI approximation.
• Red represents volume/capacity > 1, and green represents volume/capacity = 0, other colors are smoothly transitioned from green to red as volume/capacity increases from 0 to 1)
Background

Look the problem as a regression model

\[Y = f(q, s) + e \]

(speed, flow) = Travelers’ behavior(O-D demand, network supply) + error
Probabilistic O-D Estimation

- Objective: estimate the mean and variance/covariance matrix of O-D demand from day-to-day traffic data
- Data: partial observations X^o_m, 10% of the total road segments, speed on major roads
Probabilistic O-D Estimation

Why this is difficult?

• Hierarchical statistical model

• For Pittsburgh area: number of traffic flow data: ~2300
 number of traffic speed data: ~1000
 number of O-D pair: ~86000

• Under-determined problem, multiple solutions for O-D demand

• Number of parameters in variance/covariance matrix for O-D demand: 86000 * 43000!
Probabilistic O-D Estimation

Equilibrium:

- Rational travelers in recurrent traffic conditions
- If link 1 and link 2 are exactly the same, then the traffic flow on both links should be the same
- Multiple player equilibrium: Nash Equilibrium
Probabilistic O-D Estimation

General Framework:

• Iterative estimation framework (IGLS).
• EM algorithm in ML
Probabilistic O-D Estimation

Estimate OD mean:

GLS, equilibrium constraint, single level relaxation

$$\min \limits_f n \left(\Delta^o f - \hat{x}^o \right)^T \Sigma_x^{o-1} \left(\Delta^o f - \hat{x}^o \right) + (q^H - M f)^T \Sigma_q^{H-1} (q^H - M f)$$

s.t. $f \in \Phi^+$

Estimate OD variance:

MLE, convex relaxation, LASSO model selection.

$$\min \limits_{\Sigma_q} \| S^o_x - \Sigma_x^o \|_F^2 + \lambda \| \Sigma_q \|_1$$

s.t. $\Sigma_x^o = \Delta^o \Sigma f_{|q} \Delta^o T + \Delta^o \hat{p} \Sigma q \hat{p}^T \Delta^o T$

$\Sigma_q \in$ semidefinite($\mathbb{R}^{|K_q| \times |K_q|}$)
Probabilistic O-D Estimation

Model Observability:

• Non-unique solution
• No worse than deterministic O-D estimation

Goodness of fit:

• Distribution based
• Hellinger distance or Kullback-Leibler distance

\[D_H((\mu_1, \Sigma_1)^T, (\mu_2, \Sigma_2)^T) = 1 - \frac{|\Sigma_1|^{\frac{1}{4}} |\Sigma_2|^{\frac{1}{4}}}{\left(\frac{1}{2} \Sigma_1 + \frac{1}{2} \Sigma_2\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{8} (\mu_2 - \mu_1)^T \left(\frac{1}{2} \Sigma_1 + \frac{1}{2} \Sigma_2 \right)^{-1} (\mu_2 - \mu_1) \right) \] (27)

\[D_{KL}((\mu_1, \Sigma_1)^T, (\mu_2, \Sigma_2)^T) = \frac{1}{2} \left(\log \frac{|\Sigma_2|}{|\Sigma_1|} - d + \text{tr} (\Sigma_2^{-1} \Sigma_1) + (\mu_2 - \mu_1)^T \Sigma_2^{-1} (\mu_2 - \mu_1) \right) \] (28)
Probabilistic O-D Estimation

Link 1 and Link 3 Observed, 500 samples

<table>
<thead>
<tr>
<th>True ρ</th>
<th>Method</th>
<th>$\hat{q}_{1\rightarrow2}$</th>
<th>$\hat{q}_{3\rightarrow2}$</th>
<th>$\hat{\sigma}_{1\rightarrow2}$</th>
<th>$\hat{\sigma}_{3\rightarrow2}$</th>
<th>$\hat{\rho}$</th>
<th>RMPSE</th>
<th>KL-distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>700</td>
<td>500</td>
<td>13.23</td>
<td>11.18</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>0.5</td>
<td>w/o EC - w/o Lasso</td>
<td>611.02</td>
<td>588.01</td>
<td>14.18</td>
<td>11.46</td>
<td>0.37</td>
<td>14.64%</td>
<td>106.80</td>
</tr>
<tr>
<td></td>
<td>Logit - w/o Lasso</td>
<td>728.55</td>
<td>588.85</td>
<td>12.81</td>
<td>11.07</td>
<td>0.55</td>
<td>11.00%</td>
<td>33.78</td>
</tr>
<tr>
<td></td>
<td>Probit - w/o Lasso</td>
<td>618.63</td>
<td>590.17</td>
<td>15.34</td>
<td>11.36</td>
<td>0.45</td>
<td>14.31%</td>
<td>101.69</td>
</tr>
<tr>
<td>0</td>
<td>w/o EC - w/o Lasso</td>
<td>765.43</td>
<td>588.78</td>
<td>11.95</td>
<td>10.25</td>
<td>0.03</td>
<td>12.90%</td>
<td>43.08</td>
</tr>
<tr>
<td></td>
<td>Logit - w/o Lasso</td>
<td>727.94</td>
<td>588.05</td>
<td>13.05</td>
<td>11.00</td>
<td>0.05</td>
<td>10.89%</td>
<td>33.24</td>
</tr>
<tr>
<td></td>
<td>Probit - w/o Lasso</td>
<td>618.58</td>
<td>587.79</td>
<td>13.79</td>
<td>11.16</td>
<td>0.07</td>
<td>14.02%</td>
<td>49.07</td>
</tr>
<tr>
<td></td>
<td>Logit - w/ Lasso</td>
<td>728.27</td>
<td>588.48</td>
<td>12.87</td>
<td>11.53</td>
<td>0.00</td>
<td>10.95%</td>
<td>33.60</td>
</tr>
<tr>
<td></td>
<td>Probit - w/ Lasso</td>
<td>621.39</td>
<td>588.56</td>
<td>13.71</td>
<td>11.67</td>
<td>0.00</td>
<td>13.94%</td>
<td>49.04</td>
</tr>
<tr>
<td>−0.5</td>
<td>w/o EC - w/o Lasso</td>
<td>780.12</td>
<td>586.04</td>
<td>7.80</td>
<td>11.18</td>
<td>−0.58</td>
<td>13.85%</td>
<td>95.26</td>
</tr>
<tr>
<td></td>
<td>Logit - w/o Lasso</td>
<td>726.41</td>
<td>586.08</td>
<td>12.99</td>
<td>11.12</td>
<td>−0.58</td>
<td>10.61%</td>
<td>52.44</td>
</tr>
<tr>
<td></td>
<td>Probit - w/o Lasso</td>
<td>621.40</td>
<td>588.66</td>
<td>13.29</td>
<td>10.68</td>
<td>−0.37</td>
<td>13.79%</td>
<td>32.90</td>
</tr>
</tbody>
</table>

w/o EC: without equilibrium constraint; Logit/Probit: using Logit/Probit based SUE constraint; w/o Lasso: without Lasso regularization; w/ Lasso: using Lasso regularization

Carnegie Mellon University
Civil and Environmental Engineering
Probabilistic O-D Estimation

- Logit - w/ Lasso - w/ History O-D method on a desktop computer (Inter(R) Core 529 i5-4460 3.20 GHz 2, RAM 8 GB)
- Average computation time for each IGLS iteration is 233.05s.
- Converge in 20 iterations.
<table>
<thead>
<tr>
<th>Model complexity</th>
<th>Model reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>Deterministic</td>
</tr>
<tr>
<td>Static</td>
<td>Stochastic</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Static</td>
<td>Static</td>
</tr>
</tbody>
</table>
Moving to Dynamic Network

• Static O-D demand --- Dynamic O-D demand
• Travelers’ behavior --- **Dynamic network loading**
• Static traffic condition --- Network flow evolution

Time varying speed, flow = DNL(dynamic O-D demand, network supply)
Dynamic Network Loading

MAC-POSTS:

- Mobility Data Analytics Center - Prediction, optimization, and simulation toolkit for transportation systems
- https://github.com/Lemma1/MAC-POSTS
One lane closed
Speed limit drops from 60 to 40 miles/h

Philadelphia, DVRPC area
Dynamic network loading

PLAY

2:00 PM – 3:00 PM
Real-time traffic management

Objective:
• real-time control of dynamic message sign on I-95 corridor to reduce network congestion

Data Input:
• Estimated dynamic O-D demand, calibrated behavior parameters
• Real-time traffic speed feeds
• Real-time accident report

Prediction Method:
• Dynamic network loading
Real-time traffic management

Dynamic message signs along the I-95 corridor in Philadelphia
1. **Acquire Speed**: acquire the real-time traffic speed in [8:00, 8:15]
2. **Estimate Previous**: estimate the route choice probability in [8:00, 8:15]
3. **Compliance ratio update**: update the DMS compliance ratio calculated in [7:45, 8:00]
4. **Optimize Next interval**: optimize the route choice probability in [8:15, 8:30]
5. **Generate DMS Message**: based on the optimized and estimated route choice, generate DMS message for [8:15, 8:30]
6. **Predict Future**: Predict traffic state in next one hour using updated compliance ratio
7. Move current time to 8:30, go back to step 1
Overview of real-time traffic management framework

Data input
- INRIX API
 Acquire real time speed data
- Historical OD
 Estimated by off-line DTA
- Capacity Drop report
 User can report capacity drop on browser

Server
- Path generator
 Generates path for real-time vehicle routing
- State Estimator
 Estimates travelers route choice in current interval
- State Optimizer
 Optimizes travelers route choice in next interval
- DMS message generator
 Generate the DMS messages according to the estimated and optimized route choice
- Feedback learner
 Update DMS compliance rate by feedback learning

Browser
- Animation
 Traffic condition prediction of next one hour
- DMS message
 Updated DMS message online and an API is also provided

Carnegie Mellon University
Civil and Environmental Engineering
Thanks!

Contact Info:
Carnegie Mellon University
Mobility Data Analytics Center
Wei Ma: weima@cmu.edu