Travelers' Behavior Modeling, Demand Estimation and Traffic Management: a Data Perspective

Wei Ma Mobility Data Analytics Canter (MAC) Carnegie Mellon University

Outline

Background

□ Behavior modeling: Statistical Traffic Assignment

Demand estimation: Probabilistic O-D Estimation

Dynamic Network Loading

□ Real-time Traffic Management

Ranking	City	Hours spent in congestion	Total Cost per Driver	Total Cost per City
1		104	\$ 2,408.00	9.7B
2	New York	89	\$ 2,533.00	16.9B
3	San Francisco	71	\$ 1,861.00	3.1B
	Pittsburgh			

Carnegie Mellon University Civil and Environmental Engineering

http://inrix.com/resources/inrix-2016-traffic-scorecard-us/

Ranking	City	Hours spent in congestion	Total Cost per Driver	Total Cost per City
1	Los Angeles	104	\$ 2,408.00	9.7B
2	New York	89	\$ 2,533.00	16.9B
3	San Francisco	71	\$ 1,861.00	3.1B
	Pittsburgh			

Carnegie Mellon University Civil and Environmental Engineering

http://inrix.com/resources/inrix-2016-traffic-scorecard-us/

Ranking	City	Hours spent in congestion	Total Cost per Driver	Total Cost per City
1	Los Angeles	104	\$ 2,408.00	9.7B
2	New York	89	\$ 2,533.00	16.9B
3	San Francisco	71	\$ 1,861.00	3.1B
25	Pittsburgh	33	\$ 1,062.00	944M

Carnegie Mellon University Civil and Environmental Engineering

http://inrix.com/resources/inrix-2016-traffic-scorecard-us/

What causes traffic congestions?

- Supply:
 - Network capacity --- more roads
 - Road capacity --- broader roads, forbid on-street parking
 - Speed density relationship --- autonomous vehicle
- Demand:
 - Heavy demand --- public transit, ride sharing
 - Imbalanced demand --- connected vehicle, information center

A fundamental problem for all the traffic management models:

- > How to get:
 - Network Conditions
 - Traffic Demand
 - Travelers' Behavior

Carnegie Mellon University Civil and Environmental Engineering

Google Maps, Typical traffic, Wed, 4:00pm

Carnegie Mellon University Civil and Environmental Engineering

Google Maps, Typical traffic, Wed, 4:00pm

SUPPLY SIDE

What are the demand and supply for a road network?

DEMAND SIDE

- Origin Destination demand (O-D) demand
- Previously estimated by the density of residence, not accurate and not flexible
- We want to estimate the O-D demand from various traffic data.

86499 O-D pairs

Traffic flow

Carnegie Mellon University Civil and Environmental Engineering

mac.heinz.cmu.edu/traffic

Traffic speed

Carnegie Mellon University Civil and Environmental Engineering

www.ritis.org

OBJECTIVE

Infer the network conditions, travelers' behavior and traffic demand from partially observed traffic data.

Input:partially observed traffic dataOutput:whole network condition, underlying behavior

Look the problem as a regression model

Y = f(q, s) + e

(speed, flow) = Travelers' behavior(O-D demand, network supply) + error

(speed, flow) = Travelers' behavior(O-D demand, network supply) + error

Daily time-varying traffic counts on SR41 SB and NB

□ Statistical traffic assignment explores the statistical features of recurrent flow patterns

$$f: Q \longmapsto X, F$$

O-D demand variation, route choice variation, unknown error

□ Variance and covariance in O-D demand

□ Random selection of the route

Unknown error caused by measurement

How to generate traffic?

• Travelers' Information Structure: Know the distribution of path costs

D OD

- MVN: $Q \sim N(q, \Sigma_q)$
- Scalable, stable and consistent
- □ Route choice
 - *p* is deterministic for a recurrent traffic network
 - A generalized probability function: $p = \psi(C; \Theta)$
- □ Path flow
 - Path flow follows multinomial distribution
 - $F_{rs}|Q_{rs} \sim MN(Q_{rs}, p_{rs})$
 - Normal approximation
- Link flow
 - $X = \Delta F$, where Δ is the path/link incidence matrix
- □ Path cost
 - A generalized path cost function: $C \sim t(X; \Theta)$
 - Normal approximation

Model: Hierarchy		
Level 1:		TT 1
Level 2:	$X_m \sim N(X + e, \Sigma_x + \Sigma_e)$	Unknown error
	$X \sim N(\Delta pQ, \Sigma_x) \\ F \sim N(pQ, \Sigma_f)$	Route choice variation
Level 3:	$Q \sim N(q, \Sigma_q)$	OD variation

 \Box Level i is conditional on level i+1

Each level reflects one single source of the link flow variation

Model: Property

D Existence and consistence of the solution

- Fixed point problem
- If the path cost function is continuous, the solution $(x, \Sigma_x, f, \Sigma_f, p)$ exists.
- Once the solution $(x, \Sigma_x, f, \Sigma_f, p)$ is determined, then it's consistent.
- □ Reducible
 - Model can be reduced to existing statistical assignment models
- Data driven
 - Friendly to model learning techniques for large scale networks
 - Dimension reduction, sparse regularization, model selection

Model: Application

□ Marginal distribution

Marginal distribution of X_m can be written as:

$$X_m \sim N(x_m, \Delta p \Sigma_q p^T \Delta^T + \Delta \Sigma_{f|q} \Delta^T + \Sigma_e)$$

Three matrices represent the variance from OD, route choice and measurement error separately.

□ Variance ratio

- To measure the portion of each source of variance
- To help to reduce the system variance
- Trace norm, nuclear norm

Experiment

□ Settings

- OD: 1 -> 3, q = 1000, $\sigma^2 = 10000$
- Route choice model: Probit + Multinomial
- Link cost function: BPR function
- Measurement error: e = 0, $\sigma_e^2 = 100$

Experiment

□ Basic results

Large Scale Network

- □ Settings
 - SR41 freeway network: 2413 links and 7110 OD pairs
 - OD demands were carefully calibrated
 - Assume the O-D demand variance is 20% of its mean
- **Results**
 - Terminated in 9 iterations and 467 seconds

- Using Rectangle CI approximation.
- Red represents volume/capacity>1, and green represents volume/capacity=0, other colors are smoothly transitioned from green to red as volume/capacity increases from 0 to 1)

Carnegie Mellon University

Civil and Environmental Engineering

Look the problem as a regression model

Y = f(q, s) + e

(speed, flow) = Travelers' behavior(O-D demand, network supply) + error

Objective: estimate the mean and

variance/covariance matrix of O-D demand from

day-to-day traffic data

□ Data: partial observations X_m^o , 10% of the total road segments, speed on major roads

Why this is difficult?

- Hierarchical statistical model
- For Pittsburgh area: number of traffic flow data: ~2300

number of traffic speed data: ~1000

number of O-D pair: ~86000

- Under-determined problem, multiple solutions for O-D demand
- Number of parameters in variance/covariance matrix for O-D demand: 86000 * 43000 !

Equilibrium:

- Rational travelers in recurrent traffic conditions
- If link 1 and link 2 are exactly the same, then the traffic flow on both links should be the same
- Multiple player equilibrium: Nash Equilibrium

General Framework:

- Iterative estimation framework (IGLS).
- EM algorithm in ML

Estimate OD mean:

GLS, equilibrium constraint, single level relaxation

$$\min_{f} n \left(\Delta^{o} f - \hat{x^{o}} \right)^{T} \Sigma_{x}^{o-1} \left(\Delta^{o} f - \hat{x^{o}} \right) + (q^{H} - Mf)^{T} \Sigma_{q}^{H-1} (q^{H} - Mf)$$
s.t. $f \in \Phi^{+}$

Estimate OD variance:

MLE, convex relaxation, LASSO model selection.

$$\min_{\Sigma_q} \|S_x^o - \Sigma_x^o\|_F^2 + \lambda \|\Sigma_q\|_1$$
s.t.
$$\sum_x^o = \Delta^o \Sigma_{f|q} \Delta^{oT} + \Delta^o \tilde{p} \Sigma_q \tilde{p}^T \Delta^{oT}$$

$$\Sigma_q \in \text{semidefinite}(\Re^{|K_q| \times |K_q|})$$

Model Observability:

- Non-unique solution
- No worse than deterministic O-D estimation

Goodness of fit:

- Distribution based
- Hellinger distance or Kullback-Leibler distance

$$D_H((\mu_1, \Sigma_1)^T, (\mu_2, \Sigma_2)^T) = 1 - \frac{|\Sigma_1|^{\frac{1}{4}} |\Sigma_1|^{\frac{1}{4}}}{\left|\frac{1}{2}\Sigma_1 + \frac{1}{2}\Sigma_2\right|^{\frac{1}{2}}} \exp\left(-\frac{1}{8}(\mu_2 - \mu_1)^T \left(\frac{1}{2}\Sigma_1 + \frac{1}{2}\Sigma_2\right)^{-1} (\mu_2 - \mu_1)\right)$$
(27)

$$D_{KL}((\mu_1, \Sigma_1)^T, (\mu_2, \Sigma_2)^T) = \frac{1}{2} \left(\log \frac{|\Sigma_2|}{\Sigma_1} - d + \operatorname{tr} \left(\Sigma_2^{-1} \Sigma_1 \right) + (\mu_2 - \mu_1)^T \Sigma_2^{-1} (\mu_2 - \mu_1) \right)$$
(28)

Link 1 and Link 3 Observed, 500 samples

True ρ	Method	$\hat{q}_{1 \to 2}$	$\hat{q}_{3\to 2}$	$\hat{\sigma}_{1 \to 2}$	$\hat{\sigma}_{3 \to 2}$	$\hat{ ho}$	RMPSE	KL-distance
	True	700	500	13.23	11.18	NA	NA	NA
0.5	w/o EC - w/o Lasso	611.02	588.01	14.18	11.46	0.37	14.64%	106.80
	Logit - w/o Lasso	728.55	588.85	12.81	11.07	0.55	11.00%	33.78
	Probit - w/o Lasso	618.63	590.17	15.34	11.36	0.45	14.31%	101.69
0	w/o EC - w/o Lasso	765, 43	588.78	11.95	10.25	0.03	12.90%	43.08
	Logit - w/o Lasso	727.94	588.05	13.05	11.00	0.05	10.89%	33.24
	Probit - w/o Lasso	618.58	587.79	13.79	11.16	0.07	14.02%	49.07
	Logit - w/ Lasso	728.27	588.48	12.87	11.53	0.00	10.95%	33.6 0
	Probit - w/ Lasso	621.39	588.56	13.71	11.67	0.00	13.94%	49.04
-0.5	w/o EC - w/o Lasso	780.12	586.04	7.80	11.18	-0.58	13.85%	95.26
	Logit - w/o Lasso	726.41	586.08	12.99	11.12	-0.58	10.61%	52.44
	Probit - w/o Lasso	621.40	588.66	13.29	10.68	-0.37	13.79%	32.90

w/o EC: without equilibrium constraint; Logit/Probit: using Logit/Probit based SUE constraint; w/o Lasso: without Lasso regularization; w/ Lasso: using Lasso regularization

- Logit w/ Lasso w/ History O-D method on a desktop computer (Inter(R) Core 529 i5-4460 3.20 GHz 2, RAM 8 GB)
- Average computation time for each IGLS iteration is 233.05s.
- Converge in 20 iterations.

Big Map

	Model reliability				
Model	Deterministic Dynamic	Stochastic Dynamic			
complexity	Deterministic Static	Stochastic Static			

Moving to Dynamic Network

- Static O-D demand --- Dynamic O-D demand
- Travelers' behavior --- **Dynamic network loading**
- Static traffic condition --- Network flow evolution

Time varying speed, flow = DNL(dynamic O-D demand, network supply)

Dynamic Network Loading

MAC-POSTS:

- Mobility Data Analytics Center Prediction, optimization, and simulation toolkit for transportation systems
- <u>https://github.com/Lemma1/MAC-POSTS</u>

Civil and Environmental Engineering

Dynamic network loading

PLAY

Carnegie Mellon University Civil and Environmental Engineering

2:00 PM - 3:00 PM

Real-time traffic management

Objective:

• real-time control of dynamic message sign on I-95 corridor to reduce network congestion

Data Input:

- Estimated dynamic O-D demand, calibrated behavior parameters
- Real-time traffic speed feeds
- Real-time accident report

Prediction Method:

• Dynamic network loading

Real-time traffic management

Dynamic message signs along the I-95 corridor in Philadelphia

Rolling Horizon Framework

- **1.** Acquire Speed: acquire the real-time traffic speed in [8:00, 8:15]
- 2. Estimate Previous: estimate the route choice probability in [8:00, 8:15]
- **3.** Compliance ratio update: update the DMS compliance ratio calculated in [7:45, 8:00]
- **4. Optimize Next interval**: optimize the route choice probability in [8:15, 8:30]
- **5.** Generate DMS Message: based on the optimized and estimated route choice, generate DMS message for [8:15, 8:30]
- 6. **Predict Future**: Predict traffic state in next one hour using updated compliance ratio
- 7. Move current time to 8:30, go back to step 1

Overview of real-time traffic management framework

Thanks!

Contact Info:

Carnegie Mellon University Mobility Data Analytics Center Wei Ma: <u>weima@cmu.edu</u>